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Logarithm,	often	called	‘logs,’	is	the	power	to	which	a	number	must	be	raised	to	get	the	result.	It	is	thus	the	inverse	of	the	exponent	and	is	written	as:	ba	=	x	⇔	logbx	=	a	Here,	‘b’	is	the	base	‘a’	is	the	exponent	‘x’	is	the	argument	are	the	3	parts	of	a	logarithm.	Thus,	the	logarithm	represents	the	exponent	to	which	a	base	is	raised	to	yield	a	given
number.	For	example,	we	know	43	=	64	Here,	using	the	logarithm,	we	can	answer	how	many	4s	multiply	to	get	64.		Since	4	×	4	×	4	=	64,	we	multiply	three	4s	to	get	64,	which	is	written	in	the	logarithmic	form	as	log4(64)	=	3,	read	as	‘log	base	4	of	64	is	3.’	Thus,	43	=	64	⇔	log4(64)	=	3,	where	the	base	is	4,	and	the	exponent	or	power	is	3	Here	are
some	examples	of	conversions	from	exponential	to	logarithmic	form	and	vice-versa.	Exponential	FormLogarithmic	Form54	=	625log5(625)	=	4152	=	225log15(225)	=	283	=	512log8(512)	=	3	Find	the	value	of	log7(343).Solution:As	we	know,	7	×	7	×	7	=	73	=	343Thus,	log7(343)	=	3	Convert	35	=	243	in	its	logarithmic	form.Solution:As	we	know,	ba	=
x	⇒	logbx	=	aHere,	35	=	243⇒	log3(243)	=	5,	the	required	logarithmic	form.	However,	the	expression	logbx	has	some	restrictions,	which	are	as	follows:	The	base	‘b’	of	a	logarithm	is	always	a	positive	real	number	(b	>	0)	and	does	not	equal	1	(b	≠	1).	For	negative	bases,	logarithm	leads	to	complex	results.	Now,	let	us	assume	the	base	is	1,	and	the
equation	is:		log17	=	x	⇒	1x	=	7	Since	1	raised	to	any	power	yields	1,	1x	=	7	is	false.	Thus,	the	base	does	not	equal	1.	The	argument	‘x’	is	always	a	positive	real	number	(a	>	0).	Since	a	positive	number	(b	>	0)	is	raised	to	any	power,	it	yields	a	positive	number	(bx	>	0).	Thus,	bx	=	a	follows	that	a	>	0.	The	base	of	a	logarithm	can	have	many	positive
values	except	1.	However,	two	of	them	are	frequently	used.	The	logarithm	whose	base	is	10	is	known	as	the	common	logarithm	or	base-10-logarithm.	It	is	often	denoted	as	log(x)	without	a	subscript.		For	example,	log10(10000)	=	log(10000)	=	4	⇔	104	=	10000	The	logarithm	with	the	base	‘e’	(≈	2.718…,	Euler’s	number)	is	the	natural	logarithm	or
base-e-logarithm,	denoted	by	ln(x)	or	loge(x).	For	example,	ln(e2)	=	2	⇔	e2	=	e	×	e,	ln(9)	=	c	⇔	ec	=	9	Certain	rules	(also	properties	or	identities)	of	logarithms	are	used	to	simplify,	expand,	or	condense	them.	Let	us	simplify	a	logarithmic	function	log35	using	the	appropriate	rule(s).	Since	logb(xy)	=	logbx	+	logby	and	35	=	5	×	7	(Using	Product	rule)
Thus,	log35	=	log(5	×	7)	=	log	5	+	log	7	≈	0.699	+	0.845	(rounded	to	3	decimal	places)	⇒	log35	≈	1.544	(rounded	to	3	decimal	places)	We	observe	that	logarithms	also	have	decimal	values	like	1.544,	which	means	101.544…	=	35,	and	is	graphically	represented	as:	However,	negative	logarithms	are	formed	when	the	argument	is	between	0	and	1.	In
logbx	<	0,	for	0	<	x	<	1,	‘b’	is	the	base,	and	‘x’	is	the	argument.	For	example,	log(0.0001)	=	-4	gives	a	negative	value,	and	its	exponential	form,	10-4	=	0.0001,	gives	a	decimal.	Let	us	expand	the	logarithm	expression	log(5x4y5).	Here,	log(5x4y5)	Using	the	product	rule,	we	get	log(5)	+	log(x4)	+	log(y5)	Using	the	power	rule,	we	get	log(5)	+	4	log(x)	+
5	log(y)	Thus,	log(5x4y5)	=	log(5)	+	4	log(x)	+	5	log(y)	Considering	the	above	sum	of	logarithms	log(5)	+	4	log(x)	+	5	log(y)	and	condensing	it	into	a	single	logarithm,	we	get:	log(5)	+	4	log(x)	+	5	log(y)	Using	the	power	rule,	we	get	log(5)	+	log(x4)	+	log(y5)	Using	the	product	rule,	we	get	log(5x4y5)	Thus,	log(5)	+	4	log(x)	+	5	log(y)	=	log(5x4y5)
Evaluate	${\log	\left(	\dfrac{100x^{4}}{10y^{2}}\right)	+2\log	\left(	y\right)}$Solution:Here,	${\log	\left(	\dfrac{100x^{4}}{10y^{2}}\right)	+2\log	\left(	y\right)}$=	${\log	\left(	\dfrac{10x^{4}}{y^{2}}\right)	+2\log	\left(	y\right)}$Using	the	quotient	rule,	we	get${\log	\left(	10x^{4}\right)	-\log	\left(	y^{2}\right)	+2\log	\left(	y\right)}$Using
the	product	rule,	we	get${\log	\left(	10\right)	+\log	\left(	x^{4}\right)	-\log	\left(	y^{2}\right)	+2\log	\left(	y\right)}$Using	the	power	rule,	we	get${\log	\left(	10\right)	+4\log	\left(	x\right)	-2\log	\left(	y\right)	+2\log	\left(	y\right)}$Since	logbb	=	1,	log(10)	=	1Thus,	${\log	\left(	\dfrac{100x^{4}}{10y^{2}}\right)	+2\log	\left(	y\right)}$	=	1	+	4log(x)
Expand	the	expression	log2(16x8)Solution:Here,	log2(16x8)Using	the	product	law	of	logarithms,	we	getlog2(16)	+	log2(x8)=	4	+	log2(x8)Using	the	power	law	of	logarithms,	we	get4	+	8	log2(x)Thus,	log2(16x8)	=	4	+	8	log2(x)	Condense	the	expression	log5(9x2)	–	log5(x)	+	log5(8x4)Solution:Here,	log5(9x2)	–	log5(x)	+	log5(8x4)First,	we	use	the
quotient	rule	by	subtracting	the	logarithms.	The	expression	is:	${\log	_{5}\left(	\dfrac{9x^{2}}{x}\right)	+\log	_{5}\left(	8x^{4}\right)}$=	${\log	_{5}\left(	9x\right)	+\log	_{5}\left(	8x^{4}\right)}$Now,	we	use	the	product	rule	by	adding	the	logarithms.	The	expression	becomes${\log	_{5}\left(	9x\cdot	8x^{4}\right)}$=	${\log	_{5}\left(
72x^{5}\right)}$Thus,	log5(9x2)	–	log5(x)	+	log5(8x4)	=	${\log	_{5}\left(	72x^{5}\right)}$	Solve	the	equation	log(x)	+	log(3)	=	log(51)	and	find	the	value	of	x.Solution:Here,	log(x)	+	log(3)	=	log(51)⇒	log(3x)	=	log(51)	(by	the	product	rule)Now,	canceling	the	log	from	both	sides,	we	get3x	=	51⇒	x	=	17Thus,	x	=	17	A	nested	logarithm,	also	called
iterated	logarithm	or	repeated	logarithm,	represents	a	logarithm	within	another	logarithm	and	is	denoted	as	log(log(log…(logx)))	or	logn(x),	where	‘n’	is	the	level	of	nesting.	Let	us	solve	the	nested	logarithm	log2(log8(64))	First,	we	solve	the	inner	logarithm	log8(64).	Since	82	=	64,	log8(64)	=	2	Now,	solving	the	outer	logarithm,	we	get	log2(2)	=	1
Thus,	log2(log8(64))	is	simplified	to	1.	Simplify	log5(log3(log7(343)))Solution:Here,	log5(log3(log7(343)))Since	73	=	343,	log7(343)	=	3Solving	the	inner	logarithm,	we	getlog5(log3(3))Since	logb(b)	=	1,	log3(3)	=	1Now,	solving	further	logarithms,	we	getlog5(1)=	0	Last	modified	on	May	28th,	2024	Nothing	messes	up	an	equation	quite	like	logarithms.
They	are	cumbersome,	difficult	to	manipulate	and	a	little	mysterious	for	some	people.	Luckily,	there's	an	easy	way	to	rid	your	equation	of	these	pesky	mathematical	expressions.	All	you	have	to	do	is	remember	that	a	logarithm	is	the	inverse	of	an	exponent.	Although	the	base	of	a	logarithm	can	be	any	number,	the	most	common	bases	used	in	science
are	10	and	e,	which	is	an	irrational	number	known	as	Euler's	number.	To	distinguish	them,	mathematicians	use	"log"	when	the	base	is	10	and	"ln"	when	the	base	is	e.	To	rid	an	equation	of	logarithms,	raise	both	sides	to	the	same	exponent	as	the	base	of	the	logarithms.	In	equations	with	mixed	terms,	collect	all	the	logarithms	on	one	side	and	simplify
first.	The	concept	of	a	logarithm	is	simple,	but	it's	a	little	difficult	to	put	into	words.	A	logarithm	is	the	number	of	times	you	have	to	multiply	a	number	by	itself	to	get	another	number.	Another	way	to	say	it	is	that	a	logarithm	is	the	power	to	which	a	certain	number	–	called	the	base	–	must	be	raised	to	get	another	number.	The	power	is	called	the
argument	of	the	logarithm.	For	example,	log82	=	64	simply	means	that	raising	8	to	the	power	of	2	gives	64.	In	the	equation	log	x	=	100,	the	base	is	understood	to	be	10,	and	you	can	easily	solve	for	the	argument,	x	because	it	answers	the	question,	"10	raised	to	what	power	equals	100?"	The	answer	is	2.	A	logarithm	is	the	inverse	of	an	exponent.	The
equation	log	x	=	100	is	another	way	of	writing	10_x_	=	100.	This	relationship	makes	it	possible	to	remove	logarithms	from	an	equation	by	raising	both	sides	to	the	same	exponent	as	the	base	of	the	logarithm.	If	the	equation	contains	more	than	one	logarithm,	they	must	have	the	same	base	for	this	to	work.	In	the	simplest	case,	the	logarithm	of	an
unknown	number	equals	another	number:	\(\log	x	=	y\)	Raise	both	sides	to	exponents	of	10,	and	you	get	\(10^	{\log	x}	=	10^y\)	Since	10(log	x)	is	simply	x,	the	equation	becomes	\(x	=	10^y\)	When	all	the	terms	in	the	equation	are	logarithms,	raising	both	sides	to	an	exponent	produces	a	standard	algebraic	expression.	For	example,	raise	\(\log	(x^2	–
1)	=	\log	(x	+	1)\)	to	a	power	of	10	and	you	get:	\(x^2	–	1	=	x	+	1\)	which	simplifies	to	\(x^2	–	x	–	2	=	0.\)	The	solutions	are	x	=	−2;	x	=	1.	In	equations	that	contain	a	mixture	of	logarithms	and	other	algebraic	terms,	it's	important	to	collect	all	the	logarithms	on	one	side	of	the	equation.	You	can	then	add	or	subtract	terms.	According	to	the	law	of
logarithms,	the	following	is	true:	\(\log	x	+	\log	y	=	\log(xy)	\	\,\	\log	x	–	\log	y	=	\log	\bigg(\frac{x}{y}\bigg)\)	Here's	a	procedure	for	solving	an	equation	with	mixed	terms:	Start	with	the	equation:	For	example	\(\log	x	=	\log	(x	–	2)	+	3\)	Rearrange	the	terms:	\(\log	x	–	\log	(x	–	2)	=	3\)	Apply	the	law	of	logarithms:	\(\log	\bigg(\frac{x}{x-2}\bigg)	=	3\)
Raise	both	sides	to	a	power	of	10:	\(\bigg(\frac{x}{x-2}\bigg)	=	10^3\)	Solve	for	x:	\(\bigg(\frac{x}{x-2}\bigg)	=	10^3	\	x	=	1000x	–	2000	\	-999x	=	-2000	\	x	=	\frac{2000}{999}=2.002\)	Deziel,	Chris.	"How	To	Get	Rid	Of	Logarithms"	sciencing.com,	.	27	October	2020.	APA	Deziel,	Chris.	(2020,	October	27).	How	To	Get	Rid	Of	Logarithms.
sciencing.com.	Retrieved	from	Chicago	Deziel,	Chris.	How	To	Get	Rid	Of	Logarithms	last	modified	August	30,	2022.	In	its	simplest	form,	a	logarithm	answers	the	question:	How	many	of	one	number	multiply	together	to	make	another	number?	Example:	How	many	2s	multiply	together	to	make	8?	Answer:	2	×	2	×	2	=	8,	so	we	had	to	multiply	3	of	the	2s
to	get	8	So	the	logarithm	is	3	How	to	Write	it	We	write	it	like	this:	log2(8)	=	3		So	these	two	things	are	the	same:	The	number	we	multiply	is	called	the	"base",	so	we	can	say:	"the	logarithm	of	8	with	base	2	is	3"	or	"log	base	2	of	8	is	3"	or	"the	base-2	log	of	8	is	3"	Notice	we	are	dealing	with	three	numbers:	the	base:	the	number	we	are	multiplying	(a	"2"
in	the	example	above)	how	often	to	use	it	in	a	multiplication	(3	times,	which	is	the	logarithm)	The	number	we	want	to	get	(an	"8")	More	Examples	We	are	asking	"how	many	5s	need	to	be	multiplied	together	to	get	625?"	5	×	5	×	5	×	5	=	625,	so	we	need	4	of	the	5s	Answer:	log5(625)	=	4	We	are	asking	"how	many	2s	need	to	be	multiplied	together	to
get	64?"	2	×	2	×	2	×	2	×	2	×	2	=	64,	so	we	need	6	of	the	2s	Answer:	log2(64)	=	6	Exponents	Exponents	and	Logarithms	are	related,	let's	find	out	how	...	The	exponent	says	how	many	times	to	use	the	number	in	a	multiplication.	In	this	example:	23	=	2	×	2	×	2	=	8	(2	is	used	3	times	in	a	multiplication	to	get	8)	So	a	logarithm	answers	a	question	like
this:	In	this	way:	The	logarithm	tells	us	what	the	exponent	is!	In	that	example	the	"base"	is	2	and	the	"exponent"	is	3:	So	the	logarithm	answers	the	question:	What	exponent	do	we	need	(for	one	number	to	become	another	number)	?	The	general	case	is:			Example:	What	is	log10(100)	...	?	102	=	100	So	an	exponent	of	2	is	needed	to	make	10	into	100,
and:	log10(100)	=	2	Example:	What	is	log3(81)	...	?	34	=	81	So	an	exponent	of	4	is	needed	to	make	3	into	81,	and:	log3(81)	=	4	Common	Logarithms:	Base	10	Sometimes	a	logarithm	is	written	without	a	base,	like	this:	log(100)	This	usually	means	that	the	base	is	really	10.	It	is	called	a	"common	logarithm".	Engineers	love	to	use	it.	On	a	calculator	it	is
the	"log"	button.	It	is	how	many	times	we	need	to	use	10	in	a	multiplication,	to	get	our	desired	number.	Example:	log(1000)	=	log10(1000)	=	3	Natural	Logarithms:	Base	"e"	Another	base	that	is	often	used	is	e	(Euler's	Number)	which	is	about	2.71828.	This	is	called	a	"natural	logarithm".	Mathematicians	use	this	one	a	lot.	On	a	calculator	it	is	the	"ln"
button.	It	is	how	many	times	we	need	to	use	"e"	in	a	multiplication,	to	get	our	desired	number.	Example:	ln(7.389)	=	loge(7.389)	≈	2	Because	2.718282	≈	7.389	But	Sometimes	There	Is	Confusion	...	!	Mathematicians	may	use	"log"	(instead	of	"ln")	to	mean	the	natural	logarithm.	This	can	lead	to	confusion:	Example	Engineer	Thinks	Mathematician
Thinks			log(50)	log10(50)	loge(50)	confusion	ln(50)	loge(50)	loge(50)	no	confusion	log10(50)	log10(50)	log10(50)	no	confusion	So,	be	careful	when	you	read	"log"	that	you	know	what	base	they	mean!	Logarithms	Can	Have	Decimals	All	of	our	examples	have	used	whole	number	logarithms	(like	2	or	3),	but	logarithms	can	have	decimal	values	like	2.5,	or
6.081,	etc.	Example:	what	is	log10(26)	...	?	Get	your	calculator,	type	in	26	and	press	log	Answer	is:	1.41497...	The	logarithm	is	saying	that	101.41497...	=	26	(10	with	an	exponent	of	1.41497...	equals	26)	This	is	what	it	looks	like	on	a	graph:	See	how	nice	and	smooth	the	line	is.			Read	Logarithms	Can	Have	Decimals	to	find	out	more.	Negative
Logarithms	−	Negative?	But	logarithms	deal	with	multiplying.	What	is	the	opposite	of	multiplying?	Dividing!	A	negative	logarithm	means	how	many	times	to	divide	by	the	number.	We	can	have	just	one	divide:	Example:	What	is	log8(0.125)	...	?	Well,	1	÷	8	=	0.125,	So	log8(0.125)	=	−1	Or	many	divides:	Example:	What	is	log5(0.008)	...	?	1	÷	5	÷	5	÷	5
=	5-3,	So	log5(0.008)	=	−3	It	All	Makes	Sense	Multiplying	and	Dividing	are	all	part	of	the	same	simple	pattern.	Let	us	look	at	some	Base-10	logarithms	as	an	example:			Number	How	Many	10s	Base-10	Logarithm	..	etc..							1000	1	×	10	×	10	×	10	log10(1000)	=	3	100	1	×	10	×	10	log10(100)	=	2	10	1	×	10	log10(10)	=	1	1	1	log10(1)	=	0	0.1	1	÷	10
log10(0.1)	=	−1	0.01	1	÷	10	÷	10	log10(0.01)	=	−2	0.001	1	÷	10	÷	10	÷	10	log10(0.001)	=	−3	..	etc..							Looking	at	that	table,	see	how	positive,	zero	or	negative	logarithms	are	really	part	of	the	same	(fairly	simple)	pattern.	The	Word	"Logarithm"	is	a	word	made	up	by	Scottish	mathematician	John	Napier	(1550-1617),	from	the	Middle	Latin
"logarithmus"	meaning	"ratio-number"	!	340,	341,	2384,	2385,	2386,	2387,	3180,	3181,	2388,	2389	Copyright	©	2023	Rod	Pierce	Our	online	calculators,	converters,	randomizers,	and	content	are	provided	"as	is",	free	of	charge,	and	without	any	warranty	or	guarantee.	Each	tool	is	carefully	developed	and	rigorously	tested,	and	our	content	is	well-
sourced,	but	despite	our	best	effort	it	is	possible	they	contain	errors.	We	are	not	to	be	held	responsible	for	any	resulting	damages	from	proper	or	improper	use	of	the	service.	See	our	full	terms	of	service.Copyright	©	2017-2025	GIGAcalculator.com	Even	before	the	development	of	calculus,	mathematicians	employed	logarithms	to	convert	division	and
multiplication	problems	into	addition	and	subtraction	issues.	The	power	is	raised	to	a	specified	number,	usually	a	base	number,	in	a	logarithm	to	arrive	at	a	specific	number.	Logarithms	are	effective	in	manipulating	numbers	of	a	size	that	is	much	easier	to	handle	when	you	need	to	work	with	really	huge	numbers.		The	definition,	formula,	and	functions
will	all	be	covered	in-depth	in	this	part	along	with	several	examples.	In	other	words,	the	real	integer	y	that	has	the	property	that	y=xby=x	is	the	logarithm	of	x	to	base	b.		The	symbol	for	the	logarithm	is	"logbx."	(pronounced	as	"the	logarithm	of	x	to	base	b",	"the	base-b	logarithm	of	x",	or	most	commonly	"the	log,	base	b,	of	x").	Read	More:	Types	of
Probability	Key	Terms:	Logarithmic	function,	Log,	Exponential	function,	Domain,	Range.	[Click	Here	for	Sample	Questions]	A	logarithmic	function	is	an	inverse	of	the	exponential	function,	in	simple	words,	the	logarithmic	function	can	be	defined	as	the	logarithmic	function	is	an	inverse	function	to	exponentiation.	The	logarithmic	function	is	defined	as
For	x>0,	a>0	and	a	≠	1,	y=	logax	if	and	only	if	x	=	ay	Then	the	function	is	given	by	f(x)	=	loga	x	The	logarithm	base	is	equal	to	a.		This	can	be	understood	as	the	log	base	of	x.		Base	10	and	base	e	are	the	two	most	common	bases	used	in	logarithmic	functions.	The	formula	for	a	logarithmic	function	is	f	(x)	=	logb	x.		In	this	instance,	the	base	of	the
logarithm	is	b,	and	the	common	bases	used	for	natural	logs	and	logs	to	base	10	are	base	and	base	10.		Numerous	real-world	uses	of	logarithms	can	be	found	in	fields	including	electronics,	earthquake	analysis,	acoustics,	and	population	forecasting.	Read	More:	Value	of	Log	0	Graph	of	Logarithmic	Function	[Click	Here	for	Previous	Year	Questions]
Graph	of	Logarithmic	Function	Read	More:	Value	of	Log	1	Domain	and	Range	of	Logarithmic	Function	[Click	Here	for	Sample	Questions]	A	logarithmic	function	has	real	values	larger	than	zero	as	its	domain	and	real	numbers	as	its	range.	In	relation	to	the	line	y	=	x,	the	graph	of	y	=	logax	and	the	graph	of	y	=	ax	are	symmetrical.	Any	function	and	its
inverse	are	related	in	this	way.	The	domain	of	y=x	is	R+,	i.e.,	x∈(0,∞)	The	range	of	y=x	is	R	i.e.,	x	∈(-∞,∞)	Read	More:	Value	of	Log	1	to	10	Common	and	Natural	Log	[Click	Here	for	Previous	Year	Questions]	Common	logarithmic	function	-	A	common	logarithm	is	one	with	base	10.	The	place	value	in	our	number	system,	which	has	ten	bases	and	ten
digits	from	0	to	9,	is	determined	by	groups	of	ten.		With	a	common	base	of	10,	you	can	recall	common	logarithms.	The	logarithmic	function	with	base	10	is	called	the	common	logarithmic	function	It	is	denoted	by	log10	or	simply	log.	f(x)	=	log10	x	Natural	Logarithmic	Function	-	Different	is	a	natural	logarithm.	A	natural	logarithm	has	the	number	e	as
its	base	when	the	base	of	the	common	logarithm	is	10.		Despite	being	a	variable,	e	is	actually	a	fixed,	irrational	number	with	a	value	of	2.718281828459.		Other	names	for	e	include	Euler's	number	and	Napier's	constant.		To	pay	homage	to	mathematician	Leonhard	Euler,	the	letter	e	was	chosen.	Despite	appearing	difficult,	e	is	a	fascinating	number.	
There	are	numerous	uses	for	the	function	f	(x)	=	loge	x	in	business,	economics,	and	biology.		E	thus	has	significance.	The	logarithmic	function	to	the	base	e	is	called	the	natural	logarithmic	function	and	it	is	denoted	by	loge.	f(x)	=	loge	x	Read	More:	Logarithmic	Differentiation	Properties	of	Logarithmic	Function	[Click	Here	for	Sample	Questions]	All
the	properties	of	logarithmic	functions	are:	Logb(MN)	=	logb(M)	+	logb	(N)	This	property	denotes	that	the	logarithm	of	a	product	is	the	sum	of	the	logs	of	its	factors.	Multiply	two	numbers	having	the	same	base,	then	add	the	exponent’s	example:	log	20	+	log	2	=	log	40	Logb	(M/N)	=	logb	(M)	–	logb	(N)	This	property	denotes	that	the	log	of	a	quotient
is	the	difference	between	the	log	of	the	dividend	and	the	divisor.	Divide	two	numbers	having	the	same	base	and	subtract	the	exponent.Example:	log6	54	–	log6	9	=	log6	(54/9)	=	log6	6	=	1	Logb	(M/N)	=	logb	(M)	–	logb	(N)	This	property	denotes	that	the	log	of	a	quotient	is	the	difference	between	the	log	of	the	dividend	and	the	divisor.	Divide	two
numbers	having	the	same	base	and	subtract	the	exponent.Example:	log6	54	–	log6	9	=	log6	(54/9)	=	log6	6	=	1	Loga	1	=	0	logb	(x)	=	ln	x	/	ln	b	or	logb	(x)	=	log10	x	/	log10	b	some	other	properties	of	logarithms	are	as	follows:	logb	(xy)	=	logb	x	+	logb	y	Logb	b	=	1	Example:	log1010	=	1	logb	(x/y)	=	logbx	–	logb	y	logb	(xr)	=	rlogb	x	(if	logb	x	=	logb	y
therefore	x	=	y)	Logb	bx	=	x,	Example:	log1010x	=	x	There	are	also	several	fractional	logarithmic	functions.	It	has	the	important	virtue	of	allowing	one	to	utilize	the	identities	to	get	the	log	of	a	fraction.	ln(ab)=	ln(a)+ln(b)	ln(ax)	=	x	ln	(a)	Read	More:	Logarithm	questions	Solved	Examples	[Click	Here	for	Previous	Year	Questions]	Example	1.	Express
2logx	+	3logy	=	log	in	logarithm	free	form.	Solution.	2logx	+	3logy	=	log	a.	Log	a	=	logx2	+	logy3	(By	logarithmic	rule-	logab=b	log	a).	Log(X2y3)	=	log	a	(	By	the	logarithm	rule,	log	(ab)	=	log	(log	a	+	log	b)	X2y3	=	a	[If	a	=	b,	then	logma	=	log	m	b]	Example	2.	If	log(x-1)	+	log(x+1)	=	log21,	then	find	x.	Ans.	The	answer	is	log(x-1)+log(x+1)=log	21.
log(x-1)	+	log(x+1)	=	0	log[(x-1)(x+1)]	=	0	Because	log	1	Equals	0,	(x-1)	(x+1)	=	1	X2	–	1=1	X2	=	2	x	=	±	√2	Because	the	log	of	a	negative	number	is	undefined,	hence	x=	√2	Read	More:	Value	of	log	infinity	Things	to	Remember	When	a	>	1,	the	logarithmic	graph	rises,	and	when	0	a	1,	it	falls.	The	domain	is	obtained	by	increasing	the	function's
parameter	above	0.	a	>	0	and	a	≠	1	The	set	of	all	real	numbers	is	known	as	the	range.	The	function	is	continuous	and	one-to-one.	The	graph	and	x-axis	intersect	at	(1,0).	The	x-intercept	is	therefore	1.	The	equation	y=logb(x+h)+k	shifts	the	logarithmic	function,	y=logbx,	by	k	units	vertically	and	h	units	horizontally.	The	natural	logarithm	is	the	base-e
logarithm.	The	symbol	for	it	is	lnx.		The	opposite	of	the	natural	base	exponential	function,	y=ex,	is	the	natural	logarithmic	function,	y=ln	x.	Previous	Year	Questions	Ques.	Express	log(75/16)-2log(5/9)+log(32/243)	in	the	terms	of	log	2	and	log	3.	(3	Marks)	Ans.	The	answer	is	log(75/16)	–	2	log(5/9)	+	log(32/243).	Because	nlog	am	=	log	amn	⇒
log(75/16)	–	log(5/9)2	+	log(32/243)	⇒	log(75/16)	–	log(25/81)	+	log(32/243)	Given	that	log	am	–	log	a	n	=	log	a(m/n),	⇒	log[(75/16)	÷	(25/81)]	+	log(32/243)	⇒	log[(75/16)	÷	(81/25)]	+	log(32/243)	⇒	log(243/16)	+	log(32/243)	Since,	logam	+	llogan	=	log	amn	⇒	log	(32/16)	⇒	log2	Ques.	If	logam=n,	express	an-1	in	terms	of	a	and	m.	(2	Marks)	Ans.	Log
an	m=n	an	=	m	an/a	=	m/a	an	n-1	=	m/a	Ques.	If	log5	(x-7)	=	1,	find	x.	(2	Marks)	Ans.	Provided,	log5(x-7)=1	Logarithm	rules	allow	us	to	write;	51	=	x-7	5	=	x-7	x=5+7	x=12	Ques.	If	logam=n,	express	an-1	in	terms	of	a	and	m.	(2	Marks)	Ans.	logam	=	n	an	=	m	a	n	/a	=	m/a	an-1	=	m/a	Ques.	Find	x	if	log5(x-7)	=	1.	(2	Marks)	Ans.	Provided,	log5(x-7)=1
Logarithm	rules	allow	us	to	write;	51	=	x-7	5	=	x-7	x=5+7	x=12	Ques.	Find	the	log	of	32	to	the	base	4.	(2	Marks)	Ans.	log432	=	x	4x	=	32	(22)x	=	2x2x2x2x2	22x	=	25	2x=5	x=5/2	Therefore,	log432	=5/2	Ques.	Log101	=	0	should	be	expressed	exponentially.	(2	Marks)	Ans.	Assuming	log101	=	0,	We	are	aware	of	the	law;	logac=b	=	ab=c	Hence,	100	=
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function,	inverse	of	an	exponential	function	Plots	of	logarithm	functions,	with	three	commonly	used	bases.	The	special	points	logb b	=	1	are	indicated	by	dotted	lines,	and	all	curves	intersect	in	logb 1	=	0.	Arithmetic	operationsvte	Addition	(+)	term	+	term	summand	+	summand	addend	+	addend	augend	+	addend	}	=	{\displaystyle	\scriptstyle	\left.
{\begin{matrix}\scriptstyle	{\text{term}}\,+\,{\text{term}}\\\scriptstyle	{\text{summand}}\,+\,{\text{summand}}\\\scriptstyle	{\text{addend}}\,+\,{\text{addend}}\\\scriptstyle	{\text{augend}}\,+\,{\text{addend}}\end{matrix}}\right\}\,=\,}	sum	{\displaystyle	\scriptstyle	{\text{sum}}}	Subtraction	(−)	term	−	term	minuend	−	subtrahend	}	=
{\displaystyle	\scriptstyle	\left.{\begin{matrix}\scriptstyle	{\text{term}}\,-\,{\text{term}}\\\scriptstyle	{\text{minuend}}\,-\,{\text{subtrahend}}\end{matrix}}\right\}\,=\,}	difference	{\displaystyle	\scriptstyle	{\text{difference}}}	Multiplication	(×)	factor	×	factor	multiplier	×	multiplicand	}	=	{\displaystyle	\scriptstyle	\left.
{\begin{matrix}\scriptstyle	{\text{factor}}\,\times	\,{\text{factor}}\\\scriptstyle	{\text{multiplier}}\,\times	\,{\text{multiplicand}}\end{matrix}}\right\}\,=\,}	product	{\displaystyle	\scriptstyle	{\text{product}}}	Division	(÷)	dividend	divisor	numerator	denominator	}	=	{\displaystyle	\scriptstyle	\left.{\begin{matrix}\scriptstyle	{\frac	{\scriptstyle
{\text{dividend}}}{\scriptstyle	{\text{divisor}}}}\\[1ex]\scriptstyle	{\frac	{\scriptstyle	{\text{numerator}}}{\scriptstyle	{\text{denominator}}}}\end{matrix}}\right\}\,=\,}	{	fraction	quotient	ratio	{\displaystyle	\scriptstyle	\left\{{\begin{matrix}\scriptstyle	{\text{fraction}}\\\scriptstyle	{\text{quotient}}\\\scriptstyle
{\text{ratio}}\end{matrix}}\right.}	Exponentiation	base	exponent	base	power	}	=	{\displaystyle	\scriptstyle	\left.{\begin{matrix}\scriptstyle	{\text{base}}^{\text{exponent}}\\\scriptstyle	{\text{base}}^{\text{power}}\end{matrix}}\right\}\,=\,}	power	{\displaystyle	\scriptstyle	{\text{power}}}	nth	root	(√)	radicand	degree	=	{\displaystyle
\scriptstyle	{\sqrt[{\text{degree}}]{\scriptstyle	{\text{radicand}}}}\,=\,}	root	{\displaystyle	\scriptstyle	{\text{root}}}	Logarithm	(log)	log	base	⁡	(	anti-logarithm	)	=	{\displaystyle	\scriptstyle	\log	_{\text{base}}({\text{anti-logarithm}})\,=\,}	logarithm	{\displaystyle	\scriptstyle	{\text{logarithm}}}	vte	In	mathematics,	the	logarithm	of	a	number	is
the	exponent	by	which	another	fixed	value,	the	base,	must	be	raised	to	produce	that	number.	For	example,	the	logarithm	of	1000	to	base	10	is	3,	because	1000	is	10	to	the	3rd	power:	1000	=	103	=	10 × 10 × 10.	More	generally,	if	x	=	by,	then	y	is	the	logarithm	of	x	to	base	b,	written	logb	x,	so	log10	1000	=	3.	As	a	single-variable	function,	the
logarithm	to	base	b	is	the	inverse	of	exponentiation	with	base	b.	The	logarithm	base	10	is	called	the	decimal	or	common	logarithm	and	is	commonly	used	in	science	and	engineering.	The	natural	logarithm	has	the	number	e	≈	2.718	as	its	base;	its	use	is	widespread	in	mathematics	and	physics	because	of	its	very	simple	derivative.	The	binary	logarithm
uses	base	2	and	is	widely	used	in	computer	science,	information	theory,	music	theory,	and	photography.	When	the	base	is	unambiguous	from	the	context	or	irrelevant	it	is	often	omitted,	and	the	logarithm	is	written	log x.	Logarithms	were	introduced	by	John	Napier	in	1614	as	a	means	of	simplifying	calculations.[1]	They	were	rapidly	adopted	by
navigators,	scientists,	engineers,	surveyors,	and	others	to	perform	high-accuracy	computations	more	easily.	Using	logarithm	tables,	tedious	multi-digit	multiplication	steps	can	be	replaced	by	table	look-ups	and	simpler	addition.	This	is	possible	because	the	logarithm	of	a	product	is	the	sum	of	the	logarithms	of	the	factors:	log	b	⁡	(	x	y	)	=	log	b	⁡	x	+	log	b
⁡	y	,	{\displaystyle	\log	_{b}(xy)=\log	_{b}x+\log	_{b}y,}	provided	that	b,	x	and	y	are	all	positive	and	b	≠	1.	The	slide	rule,	also	based	on	logarithms,	allows	quick	calculations	without	tables,	but	at	lower	precision.	The	present-day	notion	of	logarithms	comes	from	Leonhard	Euler,	who	connected	them	to	the	exponential	function	in	the	18th	century,	and
who	also	introduced	the	letter	e	as	the	base	of	natural	logarithms.[2]	Logarithmic	scales	reduce	wide-ranging	quantities	to	smaller	scopes.	For	example,	the	decibel	(dB)	is	a	unit	used	to	express	ratio	as	logarithms,	mostly	for	signal	power	and	amplitude	(of	which	sound	pressure	is	a	common	example).	In	chemistry,	pH	is	a	logarithmic	measure	for	the
acidity	of	an	aqueous	solution.	Logarithms	are	commonplace	in	scientific	formulae,	and	in	measurements	of	the	complexity	of	algorithms	and	of	geometric	objects	called	fractals.	They	help	to	describe	frequency	ratios	of	musical	intervals,	appear	in	formulas	counting	prime	numbers	or	approximating	factorials,	inform	some	models	in	psychophysics,
and	can	aid	in	forensic	accounting.	The	concept	of	logarithm	as	the	inverse	of	exponentiation	extends	to	other	mathematical	structures	as	well.	However,	in	general	settings,	the	logarithm	tends	to	be	a	multi-valued	function.	For	example,	the	complex	logarithm	is	the	multi-valued	inverse	of	the	complex	exponential	function.	Similarly,	the	discrete
logarithm	is	the	multi-valued	inverse	of	the	exponential	function	in	finite	groups;	it	has	uses	in	public-key	cryptography.	The	graph	of	the	logarithm	base	2	crosses	the	x-axis	at	x	=	1	and	passes	through	the	points	(2,	1),	(4,	2),	and	(8,	3),	depicting,	e.g.,	log2(8)	=	3	and	23	=	8.	The	graph	gets	arbitrarily	close	to	the	y-axis,	but	does	not	meet	it.	Addition,
multiplication,	and	exponentiation	are	three	of	the	most	fundamental	arithmetic	operations.	The	inverse	of	addition	is	subtraction,	and	the	inverse	of	multiplication	is	division.	Similarly,	a	logarithm	is	the	inverse	operation	of	exponentiation.	Exponentiation	is	when	a	number	b,	the	base,	is	raised	to	a	certain	power	y,	the	exponent,	to	give	a	value	x;	this
is	denoted	b	y	=	x	.	{\displaystyle	b^{y}=x.}	For	example,	raising	2	to	the	power	of	3	gives	8:	2	3	=	8.	{\displaystyle	2^{3}=8.}	The	logarithm	of	base	b	is	the	inverse	operation,	that	provides	the	output	y	from	the	input	x.	That	is,	y	=	log	b	⁡	x	{\displaystyle	y=\log	_{b}x}	is	equivalent	to	x	=	b	y	{\displaystyle	x=b^{y}}	if	b	is	a	positive	real	number.
(If	b	is	not	a	positive	real	number,	both	exponentiation	and	logarithm	can	be	defined	but	may	take	several	values,	which	makes	definitions	much	more	complicated.)	One	of	the	main	historical	motivations	of	introducing	logarithms	is	the	formula	log	b	⁡	(	x	y	)	=	log	b	⁡	x	+	log	b	⁡	y	,	{\displaystyle	\log	_{b}(xy)=\log	_{b}x+\log	_{b}y,}	by	which	tables	of
logarithms	allow	multiplication	and	division	to	be	reduced	to	addition	and	subtraction,	a	great	aid	to	calculations	before	the	invention	of	computers.	Given	a	positive	real	number	b	such	that	b	≠	1,	the	logarithm	of	a	positive	real	number	x	with	respect	to	base	b[nb	1]	is	the	exponent	by	which	b	must	be	raised	to	yield	x.	In	other	words,	the	logarithm	of
x	to	base	b	is	the	unique	real	number	y	such	that	b	y	=	x	{\displaystyle	b^{y}=x}	.[3]	The	logarithm	is	denoted	"logb x"	(pronounced	as	"the	logarithm	of	x	to	base	b",	"the	base-b	logarithm	of	x",	or	most	commonly	"the	log,	base	b,	of	x").	An	equivalent	and	more	succinct	definition	is	that	the	function	logb	is	the	inverse	function	to	the	function	x	↦	b	x
{\displaystyle	x\mapsto	b^{x}}	.	log2 16	=	4,	since	24	=	2 ×	2 × 2 × 2	=	16.	Logarithms	can	also	be	negative:	log	2	1	2	=	−	1	{\textstyle	\log	_{2}\!{\frac	{1}{2}}=-1}	since	2	−	1	=	1	2	1	=	1	2	.	{\textstyle	2^{-1}={\frac	{1}{2^{1}}}={\frac	{1}{2}}.}	log10 150	is	approximately	2.176,	which	lies	between	2	and	3,	just	as	150	lies	between	102	=
100	and	103	=	1000.	For	any	base	b,	logb b	=	1	and	logb 1	=	0,	since	b1	=	b	and	b0	=	1,	respectively.	Main	article:	List	of	logarithmic	identities	Several	important	formulas,	sometimes	called	logarithmic	identities	or	logarithmic	laws,	relate	logarithms	to	one	another.[4]	The	logarithm	of	a	product	is	the	sum	of	the	logarithms	of	the	numbers	being
multiplied;	the	logarithm	of	the	ratio	of	two	numbers	is	the	difference	of	the	logarithms.	The	logarithm	of	the	p-th	power	of	a	number	is	p	times	the	logarithm	of	the	number	itself;	the	logarithm	of	a	p-th	root	is	the	logarithm	of	the	number	divided	by	p.	The	following	table	lists	these	identities	with	examples.	Each	of	the	identities	can	be	derived	after
substitution	of	the	logarithm	definitions	x	=	b	log	b	⁡	x	{\displaystyle	x=b^{\,\log	_{b}x}}	or	y	=	b	log	b	⁡	y	{\displaystyle	y=b^{\,\log	_{b}y}}	in	the	left	hand	sides.	In	the	following	formulas,	⁠	x	{\displaystyle	x}	⁠	and	⁠	y	{\displaystyle	y}	⁠	are	positive	real	numbers	and	⁠	p	{\displaystyle	p}	⁠	is	an	integer	greater	than	1.	Product,	quotient,	power,	and	root
identities	of	logarithms	Identity	Formula	Example	Product	log	b	⁡	(	x	y	)	=	log	b	⁡	x	+	log	b	⁡	y	{\textstyle	\log	_{b}(xy)=\log	_{b}x+\log	_{b}y}	log	3	⁡	243	=	log	3	⁡	(	9	⋅	27	)	=	log	3	⁡	9	+	log	3	⁡	27	=	2	+	3	=	5	{\textstyle	\log	_{3}243=\log	_{3}(9\cdot	27)=\log	_{3}9+\log	_{3}27=2+3=5}	Quotient	log	b	x	y	=	log	b	⁡	x	−	log	b	⁡	y	{\textstyle	\log	_{b}\!{\frac
{x}{y}}=\log	_{b}x-\log	_{b}y}	log	2	⁡	16	=	log	2	64	4	=	log	2	⁡	64	−	log	2	⁡	4	=	6	−	2	=	4	{\textstyle	\log	_{2}16=\log	_{2}\!{\frac	{64}{4}}=\log	_{2}64-\log	_{2}4=6-2=4}	Power	log	b	⁡	(	x	p	)	=	p	log	b	⁡	x	{\textstyle	\log	_{b}\left(x^{p}\right)=p\log	_{b}x}	log	2	⁡	64	=	log	2	⁡	(	2	6	)	=	6	log	2	⁡	2	=	6	{\textstyle	\log	_{2}64=\log
_{2}\left(2^{6}\right)=6\log	_{2}2=6}	Root	log	b	⁡	x	p	=	log	b	⁡	x	p	{\textstyle	\log	_{b}{\sqrt[{p}]{x}}={\frac	{\log	_{b}x}{p}}}	log	10	⁡	1000	=	1	2	log	10	⁡	1000	=	3	2	=	1.5	{\textstyle	\log	_{10}{\sqrt	{1000}}={\frac	{1}{2}}\log	_{10}1000={\frac	{3}{2}}=1.5}	The	logarithm	logb x	can	be	computed	from	the	logarithms	of	x	and	b	with	respect
to	an	arbitrary	base	k	using	the	following	formula:[nb	2]	log	b	⁡	x	=	log	k	⁡	x	log	k	⁡	b	.	{\displaystyle	\log	_{b}x={\frac	{\log	_{k}x}{\log	_{k}b}}.}	Typical	scientific	calculators	calculate	the	logarithms	to	bases	10	and	e.[5]	Logarithms	with	respect	to	any	base	b	can	be	determined	using	either	of	these	two	logarithms	by	the	previous	formula:	log	b	⁡	x	=
log	10	⁡	x	log	10	⁡	b	=	log	e	⁡	x	log	e	⁡	b	.	{\displaystyle	\log	_{b}x={\frac	{\log	_{10}x}{\log	_{10}b}}={\frac	{\log	_{e}x}{\log	_{e}b}}.}	Given	a	number	x	and	its	logarithm	y	=	logb x	to	an	unknown	base	b,	the	base	is	given	by:	b	=	x	1	y	,	{\displaystyle	b=x^{\frac	{1}{y}},}	which	can	be	seen	from	taking	the	defining	equation	x	=	b	log	b	⁡	x	=	b	y
{\displaystyle	x=b^{\,\log	_{b}x}=b^{y}}	to	the	power	of	1	y	.	{\displaystyle	{\tfrac	{1}{y}}.}	Overlaid	graphs	of	the	logarithm	for	bases	⁠ 1 /	2	⁠,	2,	and	e	Among	all	choices	for	the	base,	three	are	particularly	common.	These	are	b	=	10,	b	=	e	(the	irrational	mathematical	constant	e	≈	2.71828183	),	and	b	=	2	(the	binary	logarithm).	In	mathematical
analysis,	the	logarithm	base	e	is	widespread	because	of	analytical	properties	explained	below.	On	the	other	hand,	base	10	logarithms	(the	common	logarithm)	are	easy	to	use	for	manual	calculations	in	the	decimal	number	system:[6]	log	10	(	10	x	)			=	log	10	⁡	10			+	log	10	⁡	x			=			1	+	log	10	⁡	x	.	{\displaystyle	\log	_{10}\,(\,10\,x\,)\	=\;\log	_{10}10\
+\;\log	_{10}x\	=\	1\,+\,\log	_{10}x\,.}	Thus,	log10 (x)	is	related	to	the	number	of	decimal	digits	of	a	positive	integer	x:	The	number	of	digits	is	the	smallest	integer	strictly	bigger	than	log10 (x)	.[7]	For	example,	log10(5986)	is	approximately	3.78	.	The	next	integer	above	it	is	4,	which	is	the	number	of	digits	of	5986.	Both	the	natural	logarithm	and	the
binary	logarithm	are	used	in	information	theory,	corresponding	to	the	use	of	nats	or	bits	as	the	fundamental	units	of	information,	respectively.[8]	Binary	logarithms	are	also	used	in	computer	science,	where	the	binary	system	is	ubiquitous;	in	music	theory,	where	a	pitch	ratio	of	two	(the	octave)	is	ubiquitous	and	the	number	of	cents	between	any	two
pitches	is	a	scaled	version	of	the	binary	logarithm,	or	log	2	times	1200,	of	the	pitch	ratio	(that	is,	100	cents	per	semitone	in	conventional	equal	temperament),	or	equivalently	the	log	base	21/1200		;	and	in	photography	rescaled	base	2	logarithms	are	used	to	measure	exposure	values,	light	levels,	exposure	times,	lens	apertures,	and	film	speeds	in
"stops".[9]	The	abbreviation	log x	is	often	used	when	the	intended	base	can	be	inferred	based	on	the	context	or	discipline,	or	when	the	base	is	indeterminate	or	immaterial.	Common	logarithms	(base	10),	historically	used	in	logarithm	tables	and	slide	rules,	are	a	basic	tool	for	measurement	and	computation	in	many	areas	of	science	and	engineering;	in
these	contexts	log x	still	often	means	the	base	ten	logarithm.[10]	In	mathematics	log x	usually	refers	to	the	natural	logarithm	(base	e).[11]	In	computer	science	and	information	theory,	log	often	refers	to	binary	logarithms	(base	2).[12]	The	following	table	lists	common	notations	for	logarithms	to	these	bases.	The	"ISO	notation"	column	lists	designations
suggested	by	the	International	Organization	for	Standardization.[13]	Base	b	Name	for	logb x	ISO	notation	Other	notations	2	binary	logarithm	lb	x	[14]	ld	x,	log	x,	lg	x,[15]	log2 x	e	natural	logarithm	ln	x	[nb	3]	log	x,	loge x	10	common	logarithm	lg	x	log	x,	log10 x	b	logarithm	to	base	b	logb x	Main	article:	History	of	logarithms	The	history	of	logarithms	in
seventeenth-century	Europe	saw	the	discovery	of	a	new	function	that	extended	the	realm	of	analysis	beyond	the	scope	of	algebraic	methods.	The	method	of	logarithms	was	publicly	propounded	by	John	Napier	in	1614,	in	a	book	titled	Mirifici	Logarithmorum	Canonis	Descriptio	(Description	of	the	Wonderful	Canon	of	Logarithms).[19][20]	Prior	to
Napier's	invention,	there	had	been	other	techniques	of	similar	scopes,	such	as	the	prosthaphaeresis	or	the	use	of	tables	of	progressions,	extensively	developed	by	Jost	Bürgi	around	1600.[21][22]	Napier	coined	the	term	for	logarithm	in	Middle	Latin,	logarithmus,	literally	meaning	'ratio-number',	derived	from	the	Greek	logos	'proportion,	ratio,	word'	+
arithmos	'number'.	The	common	logarithm	of	a	number	is	the	index	of	that	power	of	ten	which	equals	the	number.[23]	Speaking	of	a	number	as	requiring	so	many	figures	is	a	rough	allusion	to	common	logarithm,	and	was	referred	to	by	Archimedes	as	the	"order	of	a	number".[24]	The	first	real	logarithms	were	heuristic	methods	to	turn	multiplication
into	addition,	thus	facilitating	rapid	computation.	Some	of	these	methods	used	tables	derived	from	trigonometric	identities.[25]	Such	methods	are	called	prosthaphaeresis.	Invention	of	the	function	now	known	as	the	natural	logarithm	began	as	an	attempt	to	perform	a	quadrature	of	a	rectangular	hyperbola	by	Grégoire	de	Saint-Vincent,	a	Belgian
Jesuit	residing	in	Prague.	Archimedes	had	written	The	Quadrature	of	the	Parabola	in	the	third	century	BC,	but	a	quadrature	for	the	hyperbola	eluded	all	efforts	until	Saint-Vincent	published	his	results	in	1647.	The	relation	that	the	logarithm	provides	between	a	geometric	progression	in	its	argument	and	an	arithmetic	progression	of	values,	prompted
A.	A.	de	Sarasa	to	make	the	connection	of	Saint-Vincent's	quadrature	and	the	tradition	of	logarithms	in	prosthaphaeresis,	leading	to	the	term	"hyperbolic	logarithm",	a	synonym	for	natural	logarithm.	Soon	the	new	function	was	appreciated	by	Christiaan	Huygens,	and	James	Gregory.	The	notation	Log	y	was	adopted	by	Gottfried	Wilhelm	Leibniz	in
1675,[26]	and	the	next	year	he	connected	it	to	the	integral	∫	d	y	y	.	{\textstyle	\int	{\frac	{dy}{y}}.}	Before	Euler	developed	his	modern	conception	of	complex	natural	logarithms,	Roger	Cotes	had	a	nearly	equivalent	result	when	he	showed	in	1714	that[27]	log	⁡	(	cos	⁡	θ	+	i	sin	⁡	θ	)	=	i	θ	.	{\displaystyle	\log(\cos	\theta	+i\sin	\theta	)=i\theta	.}	The	1797
Encyclopædia	Britannica	explanation	of	logarithms	By	simplifying	difficult	calculations	before	calculators	and	computers	became	available,	logarithms	contributed	to	the	advance	of	science,	especially	astronomy.	They	were	critical	to	advances	in	surveying,	celestial	navigation,	and	other	domains.	Pierre-Simon	Laplace	called	logarithms	"...[a]n
admirable	artifice	which,	by	reducing	to	a	few	days	the	labour	of	many	months,	doubles	the	life	of	the	astronomer,	and	spares	him	the	errors	and	disgust	inseparable	from	long	calculations."[28]	As	the	function	f(x)	=	bx	is	the	inverse	function	of	logb x,	it	has	been	called	an	antilogarithm.[29]	Nowadays,	this	function	is	more	commonly	called	an
exponential	function.	A	key	tool	that	enabled	the	practical	use	of	logarithms	was	the	table	of	logarithms.[30]	The	first	such	table	was	compiled	by	Henry	Briggs	in	1617,	immediately	after	Napier's	invention	but	with	the	innovation	of	using	10	as	the	base.	Briggs'	first	table	contained	the	common	logarithms	of	all	integers	in	the	range	from	1	to	1000,
with	a	precision	of	14	digits.	Subsequently,	tables	with	increasing	scope	were	written.	These	tables	listed	the	values	of	log10 x	for	any	number	x	in	a	certain	range,	at	a	certain	precision.	Base-10	logarithms	were	universally	used	for	computation,	hence	the	name	common	logarithm,	since	numbers	that	differ	by	factors	of	10	have	logarithms	that	differ
by	integers.	The	common	logarithm	of	x	can	be	separated	into	an	integer	part	and	a	fractional	part,	known	as	the	characteristic	and	mantissa.	Tables	of	logarithms	need	only	include	the	mantissa,	as	the	characteristic	can	be	easily	determined	by	counting	digits	from	the	decimal	point.[31]	The	characteristic	of	10	·	x	is	one	plus	the	characteristic	of	x,
and	their	mantissas	are	the	same.	Thus	using	a	three-digit	log	table,	the	logarithm	of	3542	is	approximated	by	log	10	⁡	3542	=	log	10	⁡	(	1000	⋅	3.542	)	=	3	+	log	10	⁡	3.542	≈	3	+	log	10	⁡	3.54	{\displaystyle	{\begin{aligned}\log	_{10}3542&=\log	_{10}(1000\cdot	3.542)\\&=3+\log	_{10}3.542\\&\approx	3+\log	_{10}3.54\end{aligned}}}	Greater
accuracy	can	be	obtained	by	interpolation:	log	10	⁡	3542	≈	3	+	log	10	⁡	3.54	+	0.2	(	log	10	⁡	3.55	−	log	10	⁡	3.54	)	{\displaystyle	\log	_{10}3542\approx	{}3+\log	_{10}3.54+0.2(\log	_{10}3.55-\log	_{10}3.54)}	The	value	of	10x	can	be	determined	by	reverse	look	up	in	the	same	table,	since	the	logarithm	is	a	monotonic	function.	The	product	and	quotient
of	two	positive	numbers	c	and	d	were	routinely	calculated	as	the	sum	and	difference	of	their	logarithms.	The	product	cd	or	quotient	c/d	came	from	looking	up	the	antilogarithm	of	the	sum	or	difference,	via	the	same	table:	c	d	=	10	log	10	⁡	c	10	log	10	⁡	d	=	10	log	10	⁡	c	+	log	10	⁡	d	{\displaystyle	cd=10^{\,\log	_{10}c}\,10^{\,\log	_{10}d}=10^{\,\log
_{10}c\,+\,\log	_{10}d}}	and	c	d	=	c	d	−	1	=	10	log	10	⁡	c	−	log	10	⁡	d	.	{\displaystyle	{\frac	{c}{d}}=cd^{-1}=10^{\,\log	_{10}c\,-\,\log	_{10}d}.}	For	manual	calculations	that	demand	any	appreciable	precision,	performing	the	lookups	of	the	two	logarithms,	calculating	their	sum	or	difference,	and	looking	up	the	antilogarithm	is	much	faster	than
performing	the	multiplication	by	earlier	methods	such	as	prosthaphaeresis,	which	relies	on	trigonometric	identities.	Calculations	of	powers	and	roots	are	reduced	to	multiplications	or	divisions	and	lookups	by	c	d	=	(	10	log	10	⁡	c	)	d	=	10	d	log	10	⁡	c	{\displaystyle	c^{d}=\left(10^{\,\log	_{10}c}\right)^{d}=10^{\,d\log	_{10}c}}	and	c	d	=	c	1	d	=	10	1
d	log	10	⁡	c	.	{\displaystyle	{\sqrt[{d}]{c}}=c^{\frac	{1}{d}}=10^{{\frac	{1}{d}}\log	_{10}c}.}	Trigonometric	calculations	were	facilitated	by	tables	that	contained	the	common	logarithms	of	trigonometric	functions.	Main	article:	Slide	rule	Another	critical	application	was	the	slide	rule,	a	pair	of	logarithmically	divided	scales	used	for	calculation.
The	non-sliding	logarithmic	scale,	Gunter's	rule,	was	invented	shortly	after	Napier's	invention.	William	Oughtred	enhanced	it	to	create	the	slide	rule—a	pair	of	logarithmic	scales	movable	with	respect	to	each	other.	Numbers	are	placed	on	sliding	scales	at	distances	proportional	to	the	differences	between	their	logarithms.	Sliding	the	upper	scale
appropriately	amounts	to	mechanically	adding	logarithms,	as	illustrated	here:	Schematic	depiction	of	a	slide	rule.	Starting	from	2	on	the	lower	scale,	add	the	distance	to	3	on	the	upper	scale	to	reach	the	product	6.	The	slide	rule	works	because	it	is	marked	such	that	the	distance	from	1	to	x	is	proportional	to	the	logarithm	of	x.	For	example,	adding	the
distance	from	1	to	2	on	the	lower	scale	to	the	distance	from	1	to	3	on	the	upper	scale	yields	a	product	of	6,	which	is	read	off	at	the	lower	part.	The	slide	rule	was	an	essential	calculating	tool	for	engineers	and	scientists	until	the	1970s,	because	it	allows,	at	the	expense	of	precision,	much	faster	computation	than	techniques	based	on	tables.[32]	A
deeper	study	of	logarithms	requires	the	concept	of	a	function.	A	function	is	a	rule	that,	given	one	number,	produces	another	number.[33]	An	example	is	the	function	producing	the	x-th	power	of	b	from	any	real	number	x,	where	the	base	b	is	a	fixed	number.	This	function	is	written	as	f(x)	=	b x.	When	b	is	positive	and	unequal	to	1,	we	show	below	that	f
is	invertible	when	considered	as	a	function	from	the	reals	to	the	positive	reals.	Let	b	be	a	positive	real	number	not	equal	to	1	and	let	f(x)	=	b x.	It	is	a	standard	result	in	real	analysis	that	any	continuous	strictly	monotonic	function	is	bijective	between	its	domain	and	range.	This	fact	follows	from	the	intermediate	value	theorem.[34]	Now,	f	is	strictly
increasing	(for	b	>	1),	or	strictly	decreasing	(for	0	<	b	<	1),[35]	is	continuous,	has	domain	R	{\displaystyle	\mathbb	{R}	}	,	and	has	range	R	>	0	{\displaystyle	\mathbb	{R}	_{>0}}	.	Therefore,	f	is	a	bijection	from	R	{\displaystyle	\mathbb	{R}	}	to	R	>	0	{\displaystyle	\mathbb	{R}	_{>0}}	.	In	other	words,	for	each	positive	real	number	y,	there	is
exactly	one	real	number	x	such	that	b	x	=	y	{\displaystyle	b^{x}=y}	.	We	let	log	b	:	R	>	0	→	R	{\displaystyle	\log	_{b}\colon	\mathbb	{R}	_{>0}\to	\mathbb	{R}	}	denote	the	inverse	of	f.	That	is,	logb y	is	the	unique	real	number	x	such	that	b	x	=	y	{\displaystyle	b^{x}=y}	.	This	function	is	called	the	base-b	logarithm	function	or	logarithmic	function
(or	just	logarithm).	The	function	logb x	can	also	be	essentially	characterized	by	the	product	formula	log	b	⁡	(	x	y	)	=	log	b	⁡	x	+	log	b	⁡	y	.	{\displaystyle	\log	_{b}(xy)=\log	_{b}x+\log	_{b}y.}	More	precisely,	the	logarithm	to	any	base	b	>	1	is	the	only	increasing	function	f	from	the	positive	reals	to	the	reals	satisfying	f(b)	=	1	and[36]	f	(	x	y	)	=	f	(	x	)	+	f	(	y
)	.	{\displaystyle	f(xy)=f(x)+f(y).}	The	graph	of	the	logarithm	function	logb (x)	(blue)	is	obtained	by	reflecting	the	graph	of	the	function	bx	(red)	at	the	diagonal	line	(x	=	y).	As	discussed	above,	the	function	logb	is	the	inverse	to	the	exponential	function	x	↦	b	x	{\displaystyle	x\mapsto	b^{x}}	.	Therefore,	their	graphs	correspond	to	each	other	upon
exchanging	the	x-	and	the	y-coordinates	(or	upon	reflection	at	the	diagonal	line	x	=	y),	as	shown	at	the	right:	a	point	(t,	u	=	bt)	on	the	graph	of	f	yields	a	point	(u,	t	=	logb u)	on	the	graph	of	the	logarithm	and	vice	versa.	As	a	consequence,	logb (x)	diverges	to	infinity	(gets	bigger	than	any	given	number)	if	x	grows	to	infinity,	provided	that	b	is	greater
than	one.	In	that	case,	logb(x)	is	an	increasing	function.	For	b	<	1,	logb (x)	tends	to	minus	infinity	instead.	When	x	approaches	zero,	logb x	goes	to	minus	infinity	for	b	>	1	(plus	infinity	for	b	<	1,	respectively).	The	graph	of	the	natural	logarithm	(green)	and	its	tangent	at	x	=	1.5	(black)	Analytic	properties	of	functions	pass	to	their	inverses.[34]	Thus,	as
f(x)	=	bx	is	a	continuous	and	differentiable	function,	so	is	logb y.	Roughly,	a	continuous	function	is	differentiable	if	its	graph	has	no	sharp	"corners".	Moreover,	as	the	derivative	of	f(x)	evaluates	to	ln(b)	bx	by	the	properties	of	the	exponential	function,	the	chain	rule	implies	that	the	derivative	of	logb x	is	given	by[35][37]	d	d	x	log	b	⁡	x	=	1	x	ln	⁡	b	.
{\displaystyle	{\frac	{d}{dx}}\log	_{b}x={\frac	{1}{x\ln	b}}.}	That	is,	the	slope	of	the	tangent	touching	the	graph	of	the	base-b	logarithm	at	the	point	(x,	logb (x))	equals	1/(x ln(b)).	The	derivative	of	ln(x)	is	1/x;	this	implies	that	ln(x)	is	the	unique	antiderivative	of	1/x	that	has	the	value	0	for	x	=	1.	It	is	this	very	simple	formula	that	motivated	to	qualify
as	"natural"	the	natural	logarithm;	this	is	also	one	of	the	main	reasons	of	the	importance	of	the	constant	e.	The	derivative	with	a	generalized	functional	argument	f(x)	is	d	d	x	ln	⁡	f	(	x	)	=	f	′	(	x	)	f	(	x	)	.	{\displaystyle	{\frac	{d}{dx}}\ln	f(x)={\frac	{f'(x)}{f(x)}}.}	The	quotient	at	the	right	hand	side	is	called	the	logarithmic	derivative	of	f.	Computing	f'(x)
by	means	of	the	derivative	of	ln(f(x))	is	known	as	logarithmic	differentiation.[38]	The	antiderivative	of	the	natural	logarithm	ln(x)	is:[39]	∫	ln	⁡	(	x	)	d	x	=	x	ln	⁡	(	x	)	−	x	+	C	.	{\displaystyle	\int	\ln(x)\,dx=x\ln(x)-x+C.}	Related	formulas,	such	as	antiderivatives	of	logarithms	to	other	bases	can	be	derived	from	this	equation	using	the	change	of	bases.[40]	The
natural	logarithm	of	t	is	the	shaded	area	underneath	the	graph	of	the	function	f(x)	=	1/x.	The	natural	logarithm	of	t	can	be	defined	as	the	definite	integral:	ln	⁡	t	=	∫	1	t	1	x	d	x	.	{\displaystyle	\ln	t=\int	_{1}^{t}{\frac	{1}{x}}\,dx.}	This	definition	has	the	advantage	that	it	does	not	rely	on	the	exponential	function	or	any	trigonometric	functions;	the
definition	is	in	terms	of	an	integral	of	a	simple	reciprocal.	As	an	integral,	ln(t)	equals	the	area	between	the	x-axis	and	the	graph	of	the	function	1/x,	ranging	from	x	=	1	to	x	=	t.	This	is	a	consequence	of	the	fundamental	theorem	of	calculus	and	the	fact	that	the	derivative	of	ln(x)	is	1/x.	Product	and	power	logarithm	formulas	can	be	derived	from	this
definition.[41]	For	example,	the	product	formula	ln(tu)	=	ln(t)	+	ln(u)	is	deduced	as:	ln	⁡	(	t	u	)	=	∫	1	t	u	1	x	d	x	=	(	1	)	∫	1	t	1	x	d	x	+	∫	t	t	u	1	x	d	x	=	(	2	)	ln	⁡	(	t	)	+	∫	1	u	1	w	d	w	=	ln	⁡	(	t	)	+	ln	⁡	(	u	)	.	{\displaystyle	{\begin{aligned}\ln(tu)&=\int	_{1}^{tu}{\frac	{1}{x}}\,dx\\&{\stackrel	{(1)}{=}}\int	_{1}^{t}{\frac	{1}{x}}\,dx+\int	_{t}^{tu}{\frac
{1}{x}}\,dx\\&{\stackrel	{(2)}{=}}\ln(t)+\int	_{1}^{u}{\frac	{1}{w}}\,dw\\&=\ln(t)+\ln(u).\end{aligned}}}	The	equality	(1)	splits	the	integral	into	two	parts,	while	the	equality	(2)	is	a	change	of	variable	(w	=	x/t).	In	the	illustration	below,	the	splitting	corresponds	to	dividing	the	area	into	the	yellow	and	blue	parts.	Rescaling	the	left	hand	blue	area
vertically	by	the	factor	t	and	shrinking	it	by	the	same	factor	horizontally	does	not	change	its	size.	Moving	it	appropriately,	the	area	fits	the	graph	of	the	function	f(x)	=	1/x	again.	Therefore,	the	left	hand	blue	area,	which	is	the	integral	of	f(x)	from	t	to	tu	is	the	same	as	the	integral	from	1	to	u.	This	justifies	the	equality	(2)	with	a	more	geometric	proof.	A
visual	proof	of	the	product	formula	of	the	natural	logarithm	The	power	formula	ln(tr)	=	r	ln(t)	may	be	derived	in	a	similar	way:	ln	⁡	(	t	r	)	=	∫	1	t	r	1	x	d	x	=	∫	1	t	1	w	r	(	r	w	r	−	1	d	w	)	=	r	∫	1	t	1	w	d	w	=	r	ln	⁡	(	t	)	.	{\displaystyle	{\begin{aligned}\ln(t^{r})&=\int	_{1}^{t^{r}}{\frac	{1}{x}}dx\\&=\int	_{1}^{t}{\frac	{1}{w^{r}}}\left(rw^{r-
1}\,dw\right)\\&=r\int	_{1}^{t}{\frac	{1}{w}}\,dw\\&=r\ln(t).\end{aligned}}}	The	second	equality	uses	a	change	of	variables	(integration	by	substitution),	w	=	x1/r.	The	sum	over	the	reciprocals	of	natural	numbers,	1	+	1	2	+	1	3	+	⋯	+	1	n	=	∑	k	=	1	n	1	k	,	{\displaystyle	1+{\frac	{1}{2}}+{\frac	{1}{3}}+\cdots	+{\frac	{1}{n}}=\sum
_{k=1}^{n}{\frac	{1}{k}},}	is	called	the	harmonic	series.	It	is	closely	tied	to	the	natural	logarithm:	as	n	tends	to	infinity,	the	difference,	∑	k	=	1	n	1	k	−	ln	⁡	(	n	)	,	{\displaystyle	\sum	_{k=1}^{n}{\frac	{1}{k}}-\ln(n),}	converges	(i.e.	gets	arbitrarily	close)	to	a	number	known	as	the	Euler–Mascheroni	constant	γ	=	0.5772....	This	relation	aids	in
analyzing	the	performance	of	algorithms	such	as	quicksort.[42]	Real	numbers	that	are	not	algebraic	are	called	transcendental;[43]	for	example,	π	and	e	are	such	numbers,	but	2	−	3	{\displaystyle	{\sqrt	{2-{\sqrt	{3}}}}}	is	not.	Almost	all	real	numbers	are	transcendental.	The	logarithm	is	an	example	of	a	transcendental	function.	The	Gelfond–
Schneider	theorem	asserts	that	logarithms	usually	take	transcendental,	i.e.	"difficult"	values.[44]	The	logarithm	keys	(LOG	for	base	10	and	LN	for	base	e)	on	a	TI-83	Plus	graphing	calculator	Logarithms	are	easy	to	compute	in	some	cases,	such	as	log10 (1000)	=	3.	In	general,	logarithms	can	be	calculated	using	power	series	or	the	arithmetic–geometric
mean,	or	be	retrieved	from	a	precalculated	logarithm	table	that	provides	a	fixed	precision.[45][46]	Newton's	method,	an	iterative	method	to	solve	equations	approximately,	can	also	be	used	to	calculate	the	logarithm,	because	its	inverse	function,	the	exponential	function,	can	be	computed	efficiently.[47]	Using	look-up	tables,	CORDIC-like	methods	can
be	used	to	compute	logarithms	by	using	only	the	operations	of	addition	and	bit	shifts.[48][49]	Moreover,	the	binary	logarithm	algorithm	calculates	lb(x)	recursively,	based	on	repeated	squarings	of	x,	taking	advantage	of	the	relation	log	2	⁡	(	x	2	)	=	2	log	2	⁡	|	x	|	.	{\displaystyle	\log	_{2}\left(x^{2}\right)=2\log	_{2}|x|.}	The	Taylor	series	of	ln(z)	centered
at	z	=	1.	The	animation	shows	the	first	10	approximations	along	with	the	99th	and	100th.	The	approximations	do	not	converge	beyond	a	distance	of	1	from	the	center.	For	any	real	number	z	that	satisfies	0	<	z	≤	2,	the	following	formula	holds:[nb	4][50]	ln	⁡	(	z	)	=	(	z	−	1	)	1	1	−	(	z	−	1	)	2	2	+	(	z	−	1	)	3	3	−	(	z	−	1	)	4	4	+	⋯	=	∑	k	=	1	∞	(	−	1	)	k	+	1	(	z
−	1	)	k	k	.	{\displaystyle	{\begin{aligned}\ln(z)&={\frac	{(z-1)^{1}}{1}}-{\frac	{(z-1)^{2}}{2}}+{\frac	{(z-1)^{3}}{3}}-{\frac	{(z-1)^{4}}{4}}+\cdots	\\&=\sum	_{k=1}^{\infty	}(-1)^{k+1}{\frac	{(z-1)^{k}}{k}}.\end{aligned}}}	Equating	the	function	ln(z)	to	this	infinite	sum	(series)	is	shorthand	for	saying	that	the	function	can	be
approximated	to	a	more	and	more	accurate	value	by	the	following	expressions	(known	as	partial	sums):	(	z	−	1	)	,					(	z	−	1	)	−	(	z	−	1	)	2	2	,					(	z	−	1	)	−	(	z	−	1	)	2	2	+	(	z	−	1	)	3	3	,			…	{\displaystyle	(z-1),\	\	(z-1)-{\frac	{(z-1)^{2}}{2}},\	\	(z-1)-{\frac	{(z-1)^{2}}{2}}+{\frac	{(z-1)^{3}}{3}},\	\ldots	}	For	example,	with	z	=	1.5	the	third
approximation	yields	0.4167,	which	is	about	0.011	greater	than	ln(1.5)	=	0.405465,	and	the	ninth	approximation	yields	0.40553,	which	is	only	about	0.0001	greater.	The	nth	partial	sum	can	approximate	ln(z)	with	arbitrary	precision,	provided	the	number	of	summands	n	is	large	enough.	In	elementary	calculus,	the	series	is	said	to	converge	to	the
function	ln(z),	and	the	function	is	the	limit	of	the	series.	It	is	the	Taylor	series	of	the	natural	logarithm	at	z	=	1.	The	Taylor	series	of	ln(z)	provides	a	particularly	useful	approximation	to	ln(1	+	z)	when	z	is	small,	|z|	<	1,	since	then	ln	⁡	(	1	+	z	)	=	z	−	z	2	2	+	z	3	3	−	⋯	≈	z	.	{\displaystyle	\ln(1+z)=z-{\frac	{z^{2}}{2}}+{\frac	{z^{3}}{3}}-\cdots
\approx	z.}	For	example,	with	z	=	0.1	the	first-order	approximation	gives	ln(1.1)	≈	0.1,	which	is	less	than	5%	off	the	correct	value	0.0953.	Another	series	is	based	on	the	inverse	hyperbolic	tangent	function:	ln	⁡	(	z	)	=	2	⋅	artanh	z	−	1	z	+	1	=	2	(	z	−	1	z	+	1	+	1	3	(	z	−	1	z	+	1	)	3	+	1	5	(	z	−	1	z	+	1	)	5	+	⋯	)	,	{\displaystyle	\ln(z)=2\cdot	\operatorname
{artanh}	\,{\frac	{z-1}{z+1}}=2\left({\frac	{z-1}{z+1}}+{\frac	{1}{3}}{\left({\frac	{z-1}{z+1}}\right)}^{3}+{\frac	{1}{5}}{\left({\frac	{z-1}{z+1}}\right)}^{5}+\cdots	\right),}	for	any	real	number	z	>	0.[nb	5][50]	Using	sigma	notation,	this	is	also	written	as	ln	⁡	(	z	)	=	2	∑	k	=	0	∞	1	2	k	+	1	(	z	−	1	z	+	1	)	2	k	+	1	.	{\displaystyle	\ln(z)=2\sum
_{k=0}^{\infty	}{\frac	{1}{2k+1}}\left({\frac	{z-1}{z+1}}\right)^{2k+1}.}	This	series	can	be	derived	from	the	above	Taylor	series.	It	converges	quicker	than	the	Taylor	series,	especially	if	z	is	close	to	1.	For	example,	for	z	=	1.5,	the	first	three	terms	of	the	second	series	approximate	ln(1.5)	with	an	error	of	about	3×10−6.	The	quick	convergence
for	z	close	to	1	can	be	taken	advantage	of	in	the	following	way:	given	a	low-accuracy	approximation	y	≈	ln(z)	and	putting	A	=	z	exp	⁡	(	y	)	,	{\displaystyle	A={\frac	{z}{\exp(y)}},}	the	logarithm	of	z	is:	ln	⁡	(	z	)	=	y	+	ln	⁡	(	A	)	.	{\displaystyle	\ln(z)=y+\ln(A).}	The	better	the	initial	approximation	y	is,	the	closer	A	is	to	1,	so	its	logarithm	can	be	calculated
efficiently.	A	can	be	calculated	using	the	exponential	series,	which	converges	quickly	provided	y	is	not	too	large.	Calculating	the	logarithm	of	larger	z	can	be	reduced	to	smaller	values	of	z	by	writing	z	=	a	·	10b,	so	that	ln(z)	=	ln(a)	+	b	·	ln(10).	A	closely	related	method	can	be	used	to	compute	the	logarithm	of	integers.	Putting	z	=	n	+	1	n
{\displaystyle	\textstyle	z={\frac	{n+1}{n}}}	in	the	above	series,	it	follows	that:	ln	⁡	(	n	+	1	)	=	ln	⁡	(	n	)	+	2	∑	k	=	0	∞	1	2	k	+	1	(	1	2	n	+	1	)	2	k	+	1	.	{\displaystyle	\ln(n+1)=\ln(n)+2\sum	_{k=0}^{\infty	}{\frac	{1}{2k+1}}\left({\frac	{1}{2n+1}}\right)^{2k+1}.}	If	the	logarithm	of	a	large	integer	n	is	known,	then	this	series	yields	a	fast	converging
series	for	log(n+1),	with	a	rate	of	convergence	of	(	1	2	n	+	1	)	2	{\textstyle	\left({\frac	{1}{2n+1}}\right)^{2}}	.	The	arithmetic–geometric	mean	yields	high-precision	approximations	of	the	natural	logarithm.	Sasaki	and	Kanada	showed	in	1982	that	it	was	particularly	fast	for	precisions	between	400	and	1000	decimal	places,	while	Taylor	series
methods	were	typically	faster	when	less	precision	was	needed.	In	their	work	ln(x)	is	approximated	to	a	precision	of	2−p	(or	p	precise	bits)	by	the	following	formula	(due	to	Carl	Friedrich	Gauss):[51][52]	ln	⁡	(	x	)	≈	π	2	M	(	1	,	2	2	−	m	/	x	)	−	m	ln	⁡	(	2	)	.	{\displaystyle	\ln(x)\approx	{\frac	{\pi	}{2\,\mathrm	{M}	\!\left(1,2^{2-m}/x\right)}}-m\ln(2).}	Here
M(x,	y)	denotes	the	arithmetic–geometric	mean	of	x	and	y.	It	is	obtained	by	repeatedly	calculating	the	average	(x	+	y)/2	(arithmetic	mean)	and	x	y	{\textstyle	{\sqrt	{xy}}}	(geometric	mean)	of	x	and	y	then	let	those	two	numbers	become	the	next	x	and	y.	The	two	numbers	quickly	converge	to	a	common	limit	which	is	the	value	of	M(x,	y).	m	is	chosen
such	that	x	2	m	>	2	p	/	2	.	{\displaystyle	x\,2^{m}>2^{p/2}.\,}	to	ensure	the	required	precision.	A	larger	m	makes	the	M(x,	y)	calculation	take	more	steps	(the	initial	x	and	y	are	farther	apart	so	it	takes	more	steps	to	converge)	but	gives	more	precision.	The	constants	π	and	ln(2)	can	be	calculated	with	quickly	converging	series.	While	at	Los	Alamos
National	Laboratory	working	on	the	Manhattan	Project,	Richard	Feynman	developed	a	bit-processing	algorithm	to	compute	the	logarithm	that	is	similar	to	long	division	and	was	later	used	in	the	Connection	Machine.	The	algorithm	relies	on	the	fact	that	every	real	number	x	where	1	<	x	<	2	can	be	represented	as	a	product	of	distinct	factors	of	the
form	1	+	2−k.	The	algorithm	sequentially	builds	that	product	P,	starting	with	P	=	1	and	k	=	1:	if	P	·	(1	+	2−k)	<	x,	then	it	changes	P	to	P	·	(1	+	2−k).	It	then	increases	k	{\displaystyle	k}	by	one	regardless.	The	algorithm	stops	when	k	is	large	enough	to	give	the	desired	accuracy.	Because	log(x)	is	the	sum	of	the	terms	of	the	form	log(1	+	2−k)
corresponding	to	those	k	for	which	the	factor	1	+	2−k	was	included	in	the	product	P,	log(x)	may	be	computed	by	simple	addition,	using	a	table	of	log(1	+	2−k)	for	all	k.	Any	base	may	be	used	for	the	logarithm	table.[53]	A	nautilus	shell	displaying	a	logarithmic	spiral	Logarithms	have	many	applications	inside	and	outside	mathematics.	Some	of	these
occurrences	are	related	to	the	notion	of	scale	invariance.	For	example,	each	chamber	of	the	shell	of	a	nautilus	is	an	approximate	copy	of	the	next	one,	scaled	by	a	constant	factor.	This	gives	rise	to	a	logarithmic	spiral.[54]	Benford's	law	on	the	distribution	of	leading	digits	can	also	be	explained	by	scale	invariance.[55]	Logarithms	are	also	linked	to	self-
similarity.	For	example,	logarithms	appear	in	the	analysis	of	algorithms	that	solve	a	problem	by	dividing	it	into	two	similar	smaller	problems	and	patching	their	solutions.[56]	The	dimensions	of	self-similar	geometric	shapes,	that	is,	shapes	whose	parts	resemble	the	overall	picture	are	also	based	on	logarithms.	Logarithmic	scales	are	useful	for
quantifying	the	relative	change	of	a	value	as	opposed	to	its	absolute	difference.	Moreover,	because	the	logarithmic	function	log(x)	grows	very	slowly	for	large	x,	logarithmic	scales	are	used	to	compress	large-scale	scientific	data.	Logarithms	also	occur	in	numerous	scientific	formulas,	such	as	the	Tsiolkovsky	rocket	equation,	the	Fenske	equation,	or	the
Nernst	equation.	Main	article:	Logarithmic	scale	A	logarithmic	chart	depicting	the	value	of	one	Goldmark	in	Papiermarks	during	the	German	hyperinflation	in	the	1920s	Scientific	quantities	are	often	expressed	as	logarithms	of	other	quantities,	using	a	logarithmic	scale.	For	example,	the	decibel	is	a	unit	of	measurement	associated	with	logarithmic-
scale	quantities.	It	is	based	on	the	common	logarithm	of	ratios—10	times	the	common	logarithm	of	a	power	ratio	or	20	times	the	common	logarithm	of	a	voltage	ratio.	It	is	used	to	quantify	the	attenuation	or	amplification	of	electrical	signals,[57]	to	describe	power	levels	of	sounds	in	acoustics,[58]	and	the	absorbance	of	light	in	the	fields	of
spectrometry	and	optics.	The	signal-to-noise	ratio	describing	the	amount	of	unwanted	noise	in	relation	to	a	(meaningful)	signal	is	also	measured	in	decibels.[59]	In	a	similar	vein,	the	peak	signal-to-noise	ratio	is	commonly	used	to	assess	the	quality	of	sound	and	image	compression	methods	using	the	logarithm.[60]	The	strength	of	an	earthquake	is
measured	by	taking	the	common	logarithm	of	the	energy	emitted	at	the	quake.	This	is	used	in	the	moment	magnitude	scale	or	the	Richter	magnitude	scale.	For	example,	a	5.0	earthquake	releases	32	times	(101.5)	and	a	6.0	releases	1000	times	(103)	the	energy	of	a	4.0.[61]	Apparent	magnitude	measures	the	brightness	of	stars	logarithmically.[62]	In
chemistry	the	negative	of	the	decimal	logarithm,	the	decimal	cologarithm,	is	indicated	by	the	letter	p.[63]	For	instance,	pH	is	the	decimal	cologarithm	of	the	activity	of	hydronium	ions	(the	form	hydrogen	ions	 H+	take	in	water).[64]	The	activity	of	hydronium	ions	in	neutral	water	is	10−7	mol·L−1,	hence	a	pH	of	7.	Vinegar	typically	has	a	pH	of	about	3.
The	difference	of	4	corresponds	to	a	ratio	of	104	of	the	activity,	that	is,	vinegar's	hydronium	ion	activity	is	about	10−3	mol·L−1.	Semilog	(log–linear)	graphs	use	the	logarithmic	scale	concept	for	visualization:	one	axis,	typically	the	vertical	one,	is	scaled	logarithmically.	For	example,	the	chart	at	the	right	compresses	the	steep	increase	from	1	million	to
1	trillion	to	the	same	space	(on	the	vertical	axis)	as	the	increase	from	1	to	1	million.	In	such	graphs,	exponential	functions	of	the	form	f(x)	=	a	·	bx	appear	as	straight	lines	with	slope	equal	to	the	logarithm	of	b.	Log-log	graphs	scale	both	axes	logarithmically,	which	causes	functions	of	the	form	f(x)	=	a	·	xk	to	be	depicted	as	straight	lines	with	slope	equal
to	the	exponent	k.	This	is	applied	in	visualizing	and	analyzing	power	laws.[65]	Logarithms	occur	in	several	laws	describing	human	perception:[66][67]	Hick's	law	proposes	a	logarithmic	relation	between	the	time	individuals	take	to	choose	an	alternative	and	the	number	of	choices	they	have.[68]	Fitts's	law	predicts	that	the	time	required	to	rapidly	move
to	a	target	area	is	a	logarithmic	function	of	the	ratio	between	the	distance	to	a	target	and	the	size	of	the	target.[69]	In	psychophysics,	the	Weber–Fechner	law	proposes	a	logarithmic	relationship	between	stimulus	and	sensation	such	as	the	actual	vs.	the	perceived	weight	of	an	item	a	person	is	carrying.[70]	(This	"law",	however,	is	less	realistic	than
more	recent	models,	such	as	Stevens's	power	law.[71])	Psychological	studies	found	that	individuals	with	little	mathematics	education	tend	to	estimate	quantities	logarithmically,	that	is,	they	position	a	number	on	an	unmarked	line	according	to	its	logarithm,	so	that	10	is	positioned	as	close	to	100	as	100	is	to	1000.	Increasing	education	shifts	this	to	a
linear	estimate	(positioning	1000	10	times	as	far	away)	in	some	circumstances,	while	logarithms	are	used	when	the	numbers	to	be	plotted	are	difficult	to	plot	linearly.[72][73]	Three	probability	density	functions	(PDF)	of	random	variables	with	log-normal	distributions.	The	location	parameter	μ,	which	is	zero	for	all	three	of	the	PDFs	shown,	is	the	mean
of	the	logarithm	of	the	random	variable,	not	the	mean	of	the	variable	itself.	Distribution	of	first	digits	(in	%,	red	bars)	in	the	population	of	the	237	countries	of	the	world.	Black	dots	indicate	the	distribution	predicted	by	Benford's	law.	Logarithms	arise	in	probability	theory:	the	law	of	large	numbers	dictates	that,	for	a	fair	coin,	as	the	number	of	coin-
tosses	increases	to	infinity,	the	observed	proportion	of	heads	approaches	one-half.	The	fluctuations	of	this	proportion	about	one-half	are	described	by	the	law	of	the	iterated	logarithm.[74]	Logarithms	also	occur	in	log-normal	distributions.	When	the	logarithm	of	a	random	variable	has	a	normal	distribution,	the	variable	is	said	to	have	a	log-normal
distribution.[75]	Log-normal	distributions	are	encountered	in	many	fields,	wherever	a	variable	is	formed	as	the	product	of	many	independent	positive	random	variables,	for	example	in	the	study	of	turbulence.[76]	Logarithms	are	used	for	maximum-likelihood	estimation	of	parametric	statistical	models.	For	such	a	model,	the	likelihood	function	depends
on	at	least	one	parameter	that	must	be	estimated.	A	maximum	of	the	likelihood	function	occurs	at	the	same	parameter-value	as	a	maximum	of	the	logarithm	of	the	likelihood	(the	"log	likelihood"),	because	the	logarithm	is	an	increasing	function.	The	log-likelihood	is	easier	to	maximize,	especially	for	the	multiplied	likelihoods	for	independent	random
variables.[77]	Benford's	law	describes	the	occurrence	of	digits	in	many	data	sets,	such	as	heights	of	buildings.	According	to	Benford's	law,	the	probability	that	the	first	decimal-digit	of	an	item	in	the	data	sample	is	d	(from	1	to	9)	equals	log10 (d	+	1)	−	log10 (d),	regardless	of	the	unit	of	measurement.[78]	Thus,	about	30%	of	the	data	can	be	expected	to
have	1	as	first	digit,	18%	start	with	2,	etc.	Auditors	examine	deviations	from	Benford's	law	to	detect	fraudulent	accounting.[79]	The	logarithm	transformation	is	a	type	of	data	transformation	used	to	bring	the	empirical	distribution	closer	to	the	assumed	one.	Analysis	of	algorithms	is	a	branch	of	computer	science	that	studies	the	performance	of
algorithms	(computer	programs	solving	a	certain	problem).[80]	Logarithms	are	valuable	for	describing	algorithms	that	divide	a	problem	into	smaller	ones,	and	join	the	solutions	of	the	subproblems.[81]	For	example,	to	find	a	number	in	a	sorted	list,	the	binary	search	algorithm	checks	the	middle	entry	and	proceeds	with	the	half	before	or	after	the
middle	entry	if	the	number	is	still	not	found.	This	algorithm	requires,	on	average,	log2 (N)	comparisons,	where	N	is	the	list's	length.[82]	Similarly,	the	merge	sort	algorithm	sorts	an	unsorted	list	by	dividing	the	list	into	halves	and	sorting	these	first	before	merging	the	results.	Merge	sort	algorithms	typically	require	a	time	approximately	proportional	to
N	·	log(N).[83]	The	base	of	the	logarithm	is	not	specified	here,	because	the	result	only	changes	by	a	constant	factor	when	another	base	is	used.	A	constant	factor	is	usually	disregarded	in	the	analysis	of	algorithms	under	the	standard	uniform	cost	model.[84]	A	function	f(x)	is	said	to	grow	logarithmically	if	f(x)	is	(exactly	or	approximately)	proportional
to	the	logarithm	of	x.	(Biological	descriptions	of	organism	growth,	however,	use	this	term	for	an	exponential	function.[85])	For	example,	any	natural	number	N	can	be	represented	in	binary	form	in	no	more	than	log2 N	+	1	bits.	In	other	words,	the	amount	of	memory	needed	to	store	N	grows	logarithmically	with	N.	Billiards	on	an	oval	billiard	table.
Two	particles,	starting	at	the	center	with	an	angle	differing	by	one	degree,	take	paths	that	diverge	chaotically	because	of	reflections	at	the	boundary.	Entropy	is	broadly	a	measure	of	the	disorder	of	some	system.	In	statistical	thermodynamics,	the	entropy	S	of	some	physical	system	is	defined	as	S	=	−	k	∑	i	p	i	ln	⁡	(	p	i	)	.	{\displaystyle	S=-k\sum



_{i}p_{i}\ln(p_{i}).\,}	The	sum	is	over	all	possible	states	i	of	the	system	in	question,	such	as	the	positions	of	gas	particles	in	a	container.	Moreover,	pi	is	the	probability	that	the	state	i	is	attained	and	k	is	the	Boltzmann	constant.	Similarly,	entropy	in	information	theory	measures	the	quantity	of	information.	If	a	message	recipient	may	expect	any	one	of
N	possible	messages	with	equal	likelihood,	then	the	amount	of	information	conveyed	by	any	one	such	message	is	quantified	as	log2 N	bits.[86]	Lyapunov	exponents	use	logarithms	to	gauge	the	degree	of	chaoticity	of	a	dynamical	system.	For	example,	for	a	particle	moving	on	an	oval	billiard	table,	even	small	changes	of	the	initial	conditions	result	in
very	different	paths	of	the	particle.	Such	systems	are	chaotic	in	a	deterministic	way,	because	small	measurement	errors	of	the	initial	state	predictably	lead	to	largely	different	final	states.[87]	At	least	one	Lyapunov	exponent	of	a	deterministically	chaotic	system	is	positive.	The	Sierpinski	triangle	(at	the	right)	is	constructed	by	repeatedly	replacing
equilateral	triangles	by	three	smaller	ones.	Logarithms	occur	in	definitions	of	the	dimension	of	fractals.[88]	Fractals	are	geometric	objects	that	are	self-similar	in	the	sense	that	small	parts	reproduce,	at	least	roughly,	the	entire	global	structure.	The	Sierpinski	triangle	(pictured)	can	be	covered	by	three	copies	of	itself,	each	having	sides	half	the
original	length.	This	makes	the	Hausdorff	dimension	of	this	structure	ln(3)/ln(2)	≈	1.58.	Another	logarithm-based	notion	of	dimension	is	obtained	by	counting	the	number	of	boxes	needed	to	cover	the	fractal	in	question.	Four	different	octaves	shown	on	a	linear	scale,	then	shown	on	a	logarithmic	scale	(as	the	ear	hears	them)	Logarithms	are	related	to
musical	tones	and	intervals.	In	equal	temperament	tunings,	the	frequency	ratio	depends	only	on	the	interval	between	two	tones,	not	on	the	specific	frequency,	or	pitch,	of	the	individual	tones.	In	the	12-tone	equal	temperament	tuning	common	in	modern	Western	music,	each	octave	(doubling	of	frequency)	is	broken	into	twelve	equally	spaced	intervals
called	semitones.	For	example,	if	the	note	A	has	a	frequency	of	440	Hz	then	the	note	B-flat	has	a	frequency	of	466	Hz.	The	interval	between	A	and	B-flat	is	a	semitone,	as	is	the	one	between	B-flat	and	B	(frequency	493	Hz).	Accordingly,	the	frequency	ratios	agree:	466	440	≈	493	466	≈	1.059	≈	2	12	.	{\displaystyle	{\frac	{466}{440}}\approx	{\frac
{493}{466}}\approx	1.059\approx	{\sqrt[{12}]{2}}.}	Intervals	between	arbitrary	pitches	can	be	measured	in	octaves	by	taking	the	base-2	logarithm	of	the	frequency	ratio,	can	be	measured	in	equally	tempered	semitones	by	taking	the	base-21/12	logarithm	(12	times	the	base-2	logarithm),	or	can	be	measured	in	cents,	hundredths	of	a	semitone,	by
taking	the	base-21/1200	logarithm	(1200	times	the	base-2	logarithm).	The	latter	is	used	for	finer	encoding,	as	it	is	needed	for	finer	measurements	or	non-equal	temperaments.[89]	Interval	(the	two	tones	are	played	at	the	same	time)	1/12	tone	play	Semitone	play	Just	major	third	play	Major	third	play	Tritone	play	Octave	play	Frequency	ratio	r
{\displaystyle	r}	2	1	72	≈	1.0097	{\displaystyle	2^{\frac	{1}{72}}\approx	1.0097}	2	1	12	≈	1.0595	{\displaystyle	2^{\frac	{1}{12}}\approx	1.0595}	5	4	=	1.25	{\displaystyle	{\tfrac	{5}{4}}=1.25}	2	4	12	=	2	3	≈	1.2599	{\displaystyle	{\begin{aligned}2^{\frac	{4}{12}}&={\sqrt[{3}]{2}}\\&\approx	1.2599\end{aligned}}}	2	6	12	=	2	≈	1.4142
{\displaystyle	{\begin{aligned}2^{\frac	{6}{12}}&={\sqrt	{2}}\\&\approx	1.4142\end{aligned}}}	2	12	12	=	2	{\displaystyle	2^{\frac	{12}{12}}=2}	Number	of	semitones	12	log	2	⁡	r	{\displaystyle	12\log	_{2}r}	1	6	{\displaystyle	{\tfrac	{1}{6}}}	1	{\displaystyle	1}	≈	3.8631	{\displaystyle	\approx	3.8631}	4	{\displaystyle	4}	6	{\displaystyle	6}	12
{\displaystyle	12}	Number	of	cents	1200	log	2	⁡	r	{\displaystyle	1200\log	_{2}r}	16	2	3	{\displaystyle	16{\tfrac	{2}{3}}}	100	{\displaystyle	100}	≈	386.31	{\displaystyle	\approx	386.31}	400	{\displaystyle	400}	600	{\displaystyle	600}	1200	{\displaystyle	1200}	Natural	logarithms	are	closely	linked	to	counting	prime	numbers	(2,	3,	5,	7,	11,	...),	an
important	topic	in	number	theory.	For	any	integer	x,	the	quantity	of	prime	numbers	less	than	or	equal	to	x	is	denoted	π(x).	The	prime	number	theorem	asserts	that	π(x)	is	approximately	given	by	x	ln	⁡	(	x	)	,	{\displaystyle	{\frac	{x}{\ln(x)}},}	in	the	sense	that	the	ratio	of	π(x)	and	that	fraction	approaches	1	when	x	tends	to	infinity.[90]	As	a
consequence,	the	probability	that	a	randomly	chosen	number	between	1	and	x	is	prime	is	inversely	proportional	to	the	number	of	decimal	digits	of	x.	A	far	better	estimate	of	π(x)	is	given	by	the	offset	logarithmic	integral	function	Li(x),	defined	by	L	i	(	x	)	=	∫	2	x	1	ln	⁡	(	t	)	d	t	.	{\displaystyle	\mathrm	{Li}	(x)=\int	_{2}^{x}{\frac	{1}{\ln(t)}}\,dt.}	The
Riemann	hypothesis,	one	of	the	oldest	open	mathematical	conjectures,	can	be	stated	in	terms	of	comparing	π(x)	and	Li(x).[91]	The	Erdős–Kac	theorem	describing	the	number	of	distinct	prime	factors	also	involves	the	natural	logarithm.	The	logarithm	of	n	factorial,	n!	=	1	·	2	·	...	·	n,	is	given	by	ln	⁡	(	n	!	)	=	ln	⁡	(	1	)	+	ln	⁡	(	2	)	+	⋯	+	ln	⁡	(	n	)	.	{\displaystyle
\ln(n!)=\ln(1)+\ln(2)+\cdots	+\ln(n).}	This	can	be	used	to	obtain	Stirling's	formula,	an	approximation	of	n!	for	large	n.[92]	Main	article:	Complex	logarithm	Polar	form	of	z	=	x	+	iy.	Both	φ	and	φ'	are	arguments	of	z.	All	the	complex	numbers	a	that	solve	the	equation	e	a	=	z	{\displaystyle	e^{a}=z}	are	called	complex	logarithms	of	z,	when	z	is
(considered	as)	a	complex	number.	A	complex	number	is	commonly	represented	as	z	=	x	+	iy,	where	x	and	y	are	real	numbers	and	i	is	an	imaginary	unit,	the	square	of	which	is	−1.	Such	a	number	can	be	visualized	by	a	point	in	the	complex	plane,	as	shown	at	the	right.	The	polar	form	encodes	a	non-zero	complex	number	z	by	its	absolute	value,	that	is,
the	(positive,	real)	distance	r	to	the	origin,	and	an	angle	between	the	real	(x)	axis	Re	and	the	line	passing	through	both	the	origin	and	z.	This	angle	is	called	the	argument	of	z.	The	absolute	value	r	of	z	is	given	by	r	=	x	2	+	y	2	.	{\displaystyle	\textstyle	r={\sqrt	{x^{2}+y^{2}}}.}	Using	the	geometrical	interpretation	of	sine	and	cosine	and	their
periodicity	in	2π,	any	complex	number	z	may	be	denoted	as	z	=	x	+	i	y	=	r	(	cos	⁡	φ	+	i	sin	⁡	φ	)	=	r	(	cos	⁡	(	φ	+	2	k	π	)	+	i	sin	⁡	(	φ	+	2	k	π	)	)	,	{\displaystyle	{\begin{aligned}z&=x+iy\\&=r(\cos	\varphi	+i\sin	\varphi	)\\&=r(\cos(\varphi	+2k\pi	)+i\sin(\varphi	+2k\pi	)),\end{aligned}}}	for	any	integer	number	k.	Evidently	the	argument	of	z	is	not	uniquely
specified:	both	φ	and	φ'	=	φ	+	2kπ	are	valid	arguments	of	z	for	all	integers	k,	because	adding	2kπ	radians	or	k⋅360°[nb	6]	to	φ	corresponds	to	"winding"	around	the	origin	counter-clock-wise	by	k	turns.	The	resulting	complex	number	is	always	z,	as	illustrated	at	the	right	for	k	=	1.	One	may	select	exactly	one	of	the	possible	arguments	of	z	as	the	so-
called	principal	argument,	denoted	Arg(z),	with	a	capital	A,	by	requiring	φ	to	belong	to	one,	conveniently	selected	turn,	e.g.	−π	<	φ	≤	π[93]	or	0	≤	φ	<	2π.[94]	These	regions,	where	the	argument	of	z	is	uniquely	determined	are	called	branches	of	the	argument	function.	The	principal	branch	(-π,	π)	of	the	complex	logarithm,	Log(z).	The	black	point	at	z
=	1	corresponds	to	absolute	value	zero	and	brighter	colors	refer	to	bigger	absolute	values.	The	hue	of	the	color	encodes	the	argument	of	Log(z).	Euler's	formula	connects	the	trigonometric	functions	sine	and	cosine	to	the	complex	exponential:	e	i	φ	=	cos	⁡	φ	+	i	sin	⁡	φ	.	{\displaystyle	e^{i\varphi	}=\cos	\varphi	+i\sin	\varphi	.}	Using	this	formula,	and
again	the	periodicity,	the	following	identities	hold:[95]	z	=	r	(	cos	⁡	φ	+	i	sin	⁡	φ	)	=	r	(	cos	⁡	(	φ	+	2	k	π	)	+	i	sin	⁡	(	φ	+	2	k	π	)	)	=	r	e	i	(	φ	+	2	k	π	)	=	e	ln	⁡	(	r	)	e	i	(	φ	+	2	k	π	)	=	e	ln	⁡	(	r	)	+	i	(	φ	+	2	k	π	)	=	e	a	k	,	{\displaystyle	{\begin{aligned}z&=r\left(\cos	\varphi	+i\sin	\varphi	\right)\\&=r\left(\cos(\varphi	+2k\pi	)+i\sin(\varphi	+2k\pi
)\right)\\&=re^{i(\varphi	+2k\pi	)}\\&=e^{\ln(r)}e^{i(\varphi	+2k\pi	)}\\&=e^{\ln(r)+i(\varphi	+2k\pi	)}=e^{a_{k}},\end{aligned}}}	where	ln(r)	is	the	unique	real	natural	logarithm,	ak	denote	the	complex	logarithms	of	z,	and	k	is	an	arbitrary	integer.	Therefore,	the	complex	logarithms	of	z,	which	are	all	those	complex	values	ak	for	which	the	ak-
th	power	of	e	equals	z,	are	the	infinitely	many	values	a	k	=	ln	⁡	(	r	)	+	i	(	φ	+	2	k	π	)	,	{\displaystyle	a_{k}=\ln(r)+i(\varphi	+2k\pi	),}	for	arbitrary	integers	k.	Taking	k	such	that	φ	+	2kπ	is	within	the	defined	interval	for	the	principal	arguments,	then	ak	is	called	the	principal	value	of	the	logarithm,	denoted	Log(z),	again	with	a	capital	L.	The	principal
argument	of	any	positive	real	number	x	is	0;	hence	Log(x)	is	a	real	number	and	equals	the	real	(natural)	logarithm.	However,	the	above	formulas	for	logarithms	of	products	and	powers	do	not	generalize	to	the	principal	value	of	the	complex	logarithm.[96]	The	illustration	at	the	right	depicts	Log(z),	confining	the	arguments	of	z	to	the	interval	(−π,	π].
This	way	the	corresponding	branch	of	the	complex	logarithm	has	discontinuities	all	along	the	negative	real	x	axis,	which	can	be	seen	in	the	jump	in	the	hue	there.	This	discontinuity	arises	from	jumping	to	the	other	boundary	in	the	same	branch,	when	crossing	a	boundary,	i.e.	not	changing	to	the	corresponding	k-value	of	the	continuously	neighboring
branch.	Such	a	locus	is	called	a	branch	cut.	Dropping	the	range	restrictions	on	the	argument	makes	the	relations	"argument	of	z",	and	consequently	the	"logarithm	of	z",	multi-valued	functions.	Exponentiation	occurs	in	many	areas	of	mathematics	and	its	inverse	function	is	often	referred	to	as	the	logarithm.	For	example,	the	logarithm	of	a	matrix	is
the	(multi-valued)	inverse	function	of	the	matrix	exponential.[97]	Another	example	is	the	p-adic	logarithm,	the	inverse	function	of	the	p-adic	exponential.	Both	are	defined	via	Taylor	series	analogous	to	the	real	case.[98]	In	the	context	of	differential	geometry,	the	exponential	map	maps	the	tangent	space	at	a	point	of	a	manifold	to	a	neighborhood	of
that	point.	Its	inverse	is	also	called	the	logarithmic	(or	log)	map.[99]	In	the	context	of	finite	groups	exponentiation	is	given	by	repeatedly	multiplying	one	group	element	b	with	itself.	The	discrete	logarithm	is	the	integer	n	solving	the	equation	b	n	=	x	,	{\displaystyle	b^{n}=x,}	where	x	is	an	element	of	the	group.	Carrying	out	the	exponentiation	can	be
done	efficiently,	but	the	discrete	logarithm	is	believed	to	be	very	hard	to	calculate	in	some	groups.	This	asymmetry	has	important	applications	in	public	key	cryptography,	such	as	for	example	in	the	Diffie–Hellman	key	exchange,	a	routine	that	allows	secure	exchanges	of	cryptographic	keys	over	unsecured	information	channels.[100]	Zech's	logarithm
is	related	to	the	discrete	logarithm	in	the	multiplicative	group	of	non-zero	elements	of	a	finite	field.[101]	Further	logarithm-like	inverse	functions	include	the	double	logarithm	ln(ln(x)),	the	super-	or	hyper-4-logarithm	(a	slight	variation	of	which	is	called	iterated	logarithm	in	computer	science),	the	Lambert	W	function,	and	the	logit.	They	are	the
inverse	functions	of	the	double	exponential	function,	tetration,	of	f(w)	=	wew,[102]	and	of	the	logistic	function,	respectively.[103]	From	the	perspective	of	group	theory,	the	identity	log(cd)	=	log(c)	+	log(d)	expresses	a	group	isomorphism	between	positive	reals	under	multiplication	and	reals	under	addition.	Logarithmic	functions	are	the	only
continuous	isomorphisms	between	these	groups.[104]	By	means	of	that	isomorphism,	the	Haar	measure	(Lebesgue	measure)	dx	on	the	reals	corresponds	to	the	Haar	measure	dx/x	on	the	positive	reals.[105]	The	non-negative	reals	not	only	have	a	multiplication,	but	also	have	addition,	and	form	a	semiring,	called	the	probability	semiring;	this	is	in	fact	a
semifield.	The	logarithm	then	takes	multiplication	to	addition	(log	multiplication),	and	takes	addition	to	log	addition	(LogSumExp),	giving	an	isomorphism	of	semirings	between	the	probability	semiring	and	the	log	semiring.	Logarithmic	one-forms	df/f	appear	in	complex	analysis	and	algebraic	geometry	as	differential	forms	with	logarithmic	poles.[106]
The	polylogarithm	is	the	function	defined	by	Li	s	⁡	(	z	)	=	∑	k	=	1	∞	z	k	k	s	.	{\displaystyle	\operatorname	{Li}	_{s}(z)=\sum	_{k=1}^{\infty	}{z^{k}	\over	k^{s}}.}	It	is	related	to	the	natural	logarithm	by	Li1 (z)	=	−ln(1	−	z).	Moreover,	Lis (1)	equals	the	Riemann	zeta	function	ζ(s).[107]	Mathematics	portalArithmetic	portalChemistry	portalGeography
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examples	of	the	logarithmic	functions	are	listed	below:y(x)	=	log3	xp(y)	=	log	(y	+	6)	-	5z(x)	=	5ln	x	Common	Logarithmic	FunctionLogarithmic	function	which	contains	the	logarithm	of	base	10	is	called	common	logarithmic	function.	The	common	logarithm	is	represented	as	the	log10	or	log.	The	common	logarithmic	function	is	of	the	formf(x)	=
log10xNatural	Logarithmic	FunctionLogarithmic	function	which	contains	the	logarithm	of	base	e	is	called	common	logarithmic	function.	The	common	logarithm	is	represented	as	the	loge	or	ln.	The	natural	logarithmic	function	is	of	the	form	f(x)	=	logexDomain	and	Range	of	Logarithmic	FunctionsBelow	we	will	discuss	about	the	domain	and	range	of
the	logarithmic	functions.Domain	of	Logarithmic	FunctionsDomain	of	the	fundamental	logarithmic	function	i.e.,	y	=	log	x	is	all	the	positive	real	numbers	since	the	logarithmic	function	is	defined	for	the	positive	numbers	only	i.e.,	x	>	0.	To	find	the	domain	of	the	other	logarithmic	functions	put	the	term	with	log	>	0	and	find	the	value	of	variable.	Domain
of	the	given	logarithmic	function	is	given	by	(value	of	variable,	∞).Domain	of	log	x	=	All	Positive	Real	NumbersorDomain	of	log	x	=	(0,	∞)Range	of	Logarithmic	FunctionsRange	of	the	logarithmic	function	is	defined	by	putting	the	different	values	of	x	in	the	given	logarithmic	functions.	The	range	of	the	logarithmic	function	is	set	of	all	real	numbers.
Range	of	Logarithmic	function	=	R	(Real	Numbers)In	summary:Domain	of	log	function	y	=	log	x	is	x	>	0	(or)	(0,	∞)Range	of	any	log	function	is	the	set	of	all	real	numbers	(R)Logarithmic	Function​	GraphWe	know	that,	logarithmic	functions	are	the	inverse	of	the	exponential	functions.	So,	the	graph	of	both	the	functions	are	symmetrical	about	line	y	=	x.
Also,	the	domain	of	the	logarithmic	function	log	x	is	set	of	all	the	positive	real	numbers	and	the	range	is	the	set	of	all	real	numbers.	Logarithmic	graph	is	plotted	with	the	help	of	domain	and	range	of	the	logarithmic	function.	We	find	the	x-	intercept	of	the	logarithmic	function	and	plot	the	logarithmic	graph.	The	y-intercept	of	the	logarithmic	graph	is
not	defined.	Graph	of	both	logarithmic	function	and	exponential	function	is	added	below:Properties	of	Logarithmic	FunctionThe	properties	of	the	logarithmic	functions	help	us	to	solve	the	logarithmic	functions.	The	several	properties	of	logarithmic	functions	are	listed	below:logb1	=	0logb	b	=	1logb	(pq)	=	logb	p	+	logb	qlogb	(p/q)	=	logb	p	-	logb	q
logb	px	=	x	logb	plogb	p	=	(logc	p)	/	(logc	b)Derivative	of	Logarithmic	FunctionThe	derivative	of	logarithmic	function	logex	is	1/x.	The	derivative	of	the	logarithmic	function	with	base	'a'	i.e.,	logax	is	1	/	(x	ln	a).	The	formula	for	derivatives	of	logarithmic	function	is	given	below.Derivative	of	ln	x,	i.e.	(d/dx)	(loge	x)	=	1/xDerivative	of	log	x,	i.e.	(d/dx)
(logax)	=	1	/	(x	logea)Integral	of	Logarithmic	FunctionIntegral	of	logarithmic	function	is	calculated	using	the	ILATE	rule.	The	value	of	the	integral	of	the	logarithmic	functions	given	below.	∫logex	dx	=	x	(logex	-	1)	+	C∫log	x	dx	=	x	(log	x	-	1)	+	C	Solved	Examples	on	Logarithmic	FunctionsExample	1:	Evaluate	log	20	-	log	2Solution:Let	y	=	log	20	-	log
2Using	formula:	logb	(p/q)	=	logb	p	-	logb	q	y	=	log	(20/	2)y	=	log	10Using	formula:	logb	b	=	1y	=	1Example	2:	Solve:	log927	+	5Solution:Let	y	=	log927	+	5Using	formula:	logb	p	=	(logc	p)	/	(logc	b)log927	=	(log3	27)	/	(log3	9)log927	=	(log3	33)	/	(log332)Using	the	formula:	logb	px	=	x	logb	plog927	=	3(log3	3)	/	2(log33)Using	formula:	logb	b	=
1log927	=	3/	2Putting	above	value	in	y.y	=	(3/2)	+	5y	=	13/5Example	3:	Find	the	value	of	x	when	log2x	+	log2(x	+	6)	=	4.Solution:	log2x	+	log2(x	+	6)	=	4Using	formula:	logb	(pq)	=	logb	p	+	logb	qlog2	[x	(x	+	6)]	=	4Using	formula:	ax	=	p	⇔	x	=	logap	[x	(x	+	6)]	=	24	[x	(x	+	6)]	=	16x2	+	6x	-	16	=	0x	=	2	or	-	8Example	4:	Find	the	domain	and	range	of
given	logarithmic	function	y	=	log	(6x	-	24)	+	7.Solution:y	=	log	(6x	-	24)	+	7To	find	the	domain	of	the	given	function	put	6x	-	24	>	06x	-	24	>	06x	>	24x	>	4Domain	of	the	given	logarithmic	function	=	(4,	∞)We	know	that,Range	of	any	logarithmic	function	is	set	of	all	real	numbers.


