
	

https://nemipapavanama.maxudijuz.com/531938134546631335435826681527589990039447?negofunelorugegedotapamupeposuvumalubosawij=sikupulolezerawopexikakegapogozunexidezulukizabejozuxagogawusezefusidisubosominofegijojazikuxupafirubelurigilolorajumabakolarotunozitibukixarevamemajejokugituluveropudonopaninifewakibunuzitiragutuzogitag&utm_kwd=when+to+use+center+alignment&bemuvexadoxatukoviromexudifukaloxilifuregixugemukekekojovitufaz=palonixagilatifomakidapopukuxukudofatepapivosotofonidivutajokifenepejugebawadawojezozatixesexifulofaxejosidomidasubokefonijibevuno

Share	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,
and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	You	may	not	apply	legal	terms	or
technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for
your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	In	this	example,	we	use	the	line-height	property	with	a	value	that	is	equal	to	the	height	property	to	center	the	div	element:	I	am	vertically	and	horizontally	centered.	When	the	first	CSS	specification	was	published,	all	of	CSS	was
contained	in	one	document	that	defined	CSS	Level	1.	CSS	Level	2	was	defined	also	by	a	single,	multi-chapter	document.	However	for	CSS	beyond	Level	2,	the	CSS	Working	Group	chose	to	adopt	a	modular	approach,	where	each	module	defines	a	part	of	CSS,	rather	than	to	define	a	single	monolithic	specification.	This	breaks	the	specification	into	more
manageable	chunks	and	allows	more	immediate,	incremental	improvement	to	CSS.	Since	different	CSS	modules	are	at	different	levels	of	stability,	the	CSS	Working	Group	has	chosen	to	publish	this	profile	to	define	the	current	scope	and	state	of	Cascading	Style	Sheets	as	of	2024.	Cascading	Style	Sheets	(CSS)	CSS	is	a	language	for	writing	style
sheets,	and	is	designed	to	describe	the	rendering	of	structured	documents	(such	as	HTML	and	XML)	on	a	variety	of	media.	CSS	is	used	to	describe	the	presentation	of	a	source	document,	and	usually	does	not	change	the	underlying	semantics	expressed	by	its	document	language.	Style	sheet	A	set	of	rules	that	specify	the	presentation	of	a	document.
Style	sheets	are	written	by	an	Author,	and	interpreted	by	a	User	Agent,	to	present	the	document	to	the	User.	Source	document	The	document	to	which	one	or	more	style	sheets	apply.	A	source	documents	structure	and	semantics	are	encoded	using	a	document	language	(e.g.,	HTML,	XHTML,	or	SVG).	Author	An	author	is	a	person	who	writes
documents	and	associated	style	sheets.	An	authoring	tool	is	a	User	Agent	that	generates	style	sheets.	User	A	user	is	a	person	who	interacts	with	a	user	agent	to	view,	hear,	or	otherwise	use	the	document.	User	Agent	(UA)	A	user	agent	is	any	program	that	interprets	a	document	and	its	associated	style	sheets	on	behalf	of	a	user.	A	user	agent	may
display	a	document,	read	it	aloud,	cause	it	to	be	printed,	convert	it	to	another	format,	etc.	For	the	purposes	of	the	CSS	specifications,	a	User	Agent	is	one	that	supports	and	interprets	Cascading	Style	Sheets	as	defined	in	these	specifications.	This	section	is	non-normative.	In	the	W3C	Process,	a	Recommendation-track	document	passes	through	three
levels	of	stability,	summarized	below:	Working	Draft	(WD)	This	is	the	design	phase	of	a	W3C	spec.	The	WG	iterates	the	spec	in	response	to	internal	and	external	feedback.	The	first	official	Working	Draft	is	designated	the	First	Public	Working	Draft	(FPWD).	In	the	CSSWG,	publishing	FPWD	indicates	that	the	Working	Group	as	a	whole	has	agreed	to
work	on	the	module,	roughly	as	scoped	out	and	proposed	in	the	editors	draft.	The	transition	to	the	next	stage	is	sometimes	called	Last	Call	Working	Draft	(LCWD)	phase.	The	CSSWG	transitions	Working	Drafts	once	we	have	resolved	all	known	issues,	and	can	make	no	further	progress	without	feedback	from	building	tests	and	implementations.	This
Last	Call	for	Comments	sets	a	deadline	for	reporting	any	outstanding	issues,	and	requires	the	WG	to	specially	track	and	address	incoming	feedback.	The	comment-tracking	document	is	the	Disposition	of	Comments	(DoC).	It	is	submitted	along	with	an	updated	draft	for	the	Directors	approval,	to	demonstrate	wide	review	and	acceptance.	Candidate
Recommendation	(CR)	This	is	the	testing	phase	of	a	W3C	spec.	Notably,	this	phase	is	about	using	tests	and	implementations	to	test	the	specification:	it	is	not	about	testing	the	implementations.	This	process	often	reveals	more	problems	with	the	spec,	and	so	a	Candidate	Recommendation	will	morph	over	time	in	response	to	implementation	and	testing
feedback,	though	usually	less	so	than	during	the	design	phase	(WD).	Demonstration	of	two	correct,	independent	implementations	of	each	feature	is	required	to	exit	CR,	so	in	this	phase	the	WG	builds	a	test	suite	and	generates	implementation	reports.	The	transition	to	the	next	stage	is	Proposed	Recommendation	(PR).	During	this	phase	the	W3C
Advisory	Committee	must	approve	the	transition	to	REC.	Recommendation	(REC)	This	is	the	completed	state	of	a	W3C	spec	and	represents	a	maintenance	phase.	At	this	point	the	WG	only	maintains	an	errata	document	and	occasionally	publishes	an	updated	edition	that	incorporates	the	errata	back	into	the	spec.	An	Editors	Draft	is	effectively	a	live
copy	of	the	editors	own	working	copy.	It	may	or	may	not	reflect	Working	Group	consensus,	and	can	at	times	be	in	a	self-inconsistent	state.	(Because	the	publishing	process	at	W3C	is	time-consuming	and	onerous,	the	Editors	Draft	is	usually	the	best	(most	up-to-date)	reference	for	a	spec.	Efforts	are	currently	underway	to	reduce	the	friction	of
publishing,	so	that	official	drafts	will	be	regularly	up-to-date	and	Editors	Drafts	can	return	to	their	original	function	as	scratch	space.)	A	list	of	all	CSS	modules,	stable	and	in-progress,	and	their	statuses	can	be	found	at	the	CSS	Current	Work	page.	This	profile	includes	only	specifications	that	we	consider	stable	and	for	which	we	have	enough
implementation	experience	that	we	are	sure	of	that	stability.	Note:	This	is	not	intended	to	be	a	CSS	Desktop	Browser	Profile:	inclusion	in	this	profile	is	based	on	feature	stability	only	and	not	on	expected	use	or	Web	browser	adoption.	This	profile	defines	CSS	in	its	most	complete	form.	As	of	2024,	Cascading	Style	Sheets	(CSS)	is	defined	by	the
following	specifications.	CSS	Level	2,	latest	revision	(including	errata)	[CSS2]	This	defines	the	core	of	CSS,	parts	of	which	are	overridden	by	later	specifications.	We	recommend	in	particular	reading	Chapter	2,	which	introduces	some	of	the	basic	concepts	of	CSS	and	its	design	principles.	CSS	Syntax	Level	3	[CSS-SYNTAX-3]	Replaces	CSS24.1,
CSS24.2,	CSS24.4,	and	CSS2G,	redefining	how	CSS	is	parsed.	CSS	Style	Attributes	[CSS-STYLE-ATTR]	Defines	how	CSS	declarations	can	be	embedded	in	markup	attributes.	Media	Queries	Level	3	[CSS3-MEDIAQUERIES]	Replaces	CSS27.3	and	expands	on	the	syntax	for	media-specific	styles.	CSS	Conditional	Rules	Level	3	[CSS-CONDITIONAL-3]
Extends	and	supersedes	CSS27.2,	updating	the	definition	of	@media	rules	to	allow	nesting	and	introducing	the	@supports	rule	for	feature-support	queries.	Selectors	Level	3	[SELECTORS-3]	Replaces	CSS25	and	CSS26.4.3,	defining	an	extended	range	of	selectors.	CSS	Namespaces	[CSS3-NAMESPACE]	Introduces	an	@namespace	rule	to	allow
namespace-prefixed	selectors.	CSS	Cascading	and	Inheritance	Level	4	[CSS-CASCADE-4]	Extends	and	supersedes	CSS21.4.3	and	CSS26,	as	well	as	[CSS-CASCADE-3].	Describes	how	to	collate	style	rules	and	assign	values	to	all	properties	on	all	elements.	By	way	of	cascading	and	inheritance,	values	are	propagated	for	all	properties	on	all	elements.
CSS	Values	and	Units	Level	3	[CSS-VALUES-3]	Extends	and	supersedes	CSS21.4.2.1,	CSS24.3,	and	CSS2A.2.13,	defining	CSSs	property	definition	syntax	and	expanding	its	set	of	units.	CSS	Custom	Properties	for	Cascading	Variables	Module	Level	1	[CSS-VARIABLES-1]	Introduces	cascading	variables	as	a	new	primitive	value	type	that	is	accepted	by
all	CSS	properties,	and	custom	properties	for	defining	them.	CSS	Box	Model	Level	3	[CSS-BOX-3]	Replaces	CSS28.1,	8.2,	8.3	(but	not	8.3.1),	and	8.4.	CSS	Color	Level	4	[CSS-COLOR-4]	Extends	and	supersedes	CSS24.3.6,	CSS214.1,	and	CSS218.2,	also	extends	and	supersedes	[CSS-COLOR-3],	introducing	an	extended	range	of	color	spaces	beyond
sRGB,	extended	color	values,	and	CSS	Object	Model	extensions	for	color.	Also	defines	the	opacity	property.	CSS	Backgrounds	and	Borders	Level	3	[CSS-BACKGROUNDS-3]	Extends	and	supersedes	CSS28.5	and	CSS214.2,	providing	more	control	of	backgrounds	and	borders,	including	layered	background	images,	image	borders,	and	drop	shadows.
CSS	Images	Level	3	[CSS-IMAGES-3]	Redefines	and	incorporates	the	external	2D	image	value	type,	introduces	native	2D	gradients,	and	adds	additional	controls	for	replaced	element	sizing	and	rendering.	CSS	Fonts	Level	3	[CSS-FONTS-3]	Extends	and	supersedes	CSS215	and	provides	more	control	over	font	choice	and	feature	selection.	CSS	Writing
Modes	Level	3	[CSS-WRITING-MODES-3]	Defines	CSS	support	for	various	international	writing	modes,	such	as	left-to-right	(e.g.	Latin	or	Indic),	right-to-left	(e.g.	Hebrew	or	Arabic),	bidirectional	(e.g.	mixed	Latin	and	Arabic)	and	vertical	(e.g.	Asian	scripts).	Replaces	and	extends	CSS28.6	and	9.10.	CSS	Multi-column	Layout	Level	1	[CSS-MULTICOL-1]
Introduces	multi-column	flows	to	CSS	layout.	CSS	Flexible	Box	Module	Level	1	[CSS-FLEXBOX-1]	Introduces	a	flexible	linear	layout	model	for	CSS.	CSS	Basic	User	Interface	Module	Level	3	[CSS-UI-3]	Extends	and	supersedes	CSS218.1	and	CSS218.4,	defining	cursor,	outline,	and	several	new	CSS	features	that	also	enhance	the	user	interface.	CSS
Containment	Module	Level	1	[CSS-CONTAIN-1]	Introduces	the	contain	property,	which	enforces	the	independent	CSS	processing	of	an	elements	subtree	in	order	to	enable	heavy	optimizations	by	user	agents	when	used	well.	CSS	Transforms	Level	1	[CSS-TRANSFORMS-1]	Introduces	coordinate-based	graphical	transformations	to	CSS.	CSS
Compositing	and	Blending	Level	1	[COMPOSITING]	Defines	the	compositing	and	blending	of	overlaid	content	and	introduces	features	to	control	their	modes.	CSS	Easing	Functions	Level	1	[CSS-EASING-1].	Describes	a	way	for	authors	to	define	a	transformation	that	controls	the	rate	of	change	of	some	value.	Applied	to	animations,	such
transformations	can	be	used	to	produce	animations	that	mimic	physical	phenomena	such	as	momentum	or	to	cause	the	animation	to	move	in	discrete	steps	producing	robot-like	movement.	CSS	Counter	Styles	Level	3	[CSS-COUNTER-STYLES-3]	Introduces	the	@counter-style	rule,	which	allows	authors	to	define	their	own	custom	counter	styles	for	use
with	CSS	list-marker	and	generated-content	counters	[CSS-LISTS-3].	It	also	predefines	a	set	of	common	counter	styles,	including	the	ones	present	in	CSS2	and	CSS2.1.	Note:	Although	we	dont	anticipate	significant	changes	to	the	specifications	that	form	this	snapshot,	their	inclusion	does	not	mean	they	are	frozen.	The	Working	Group	will	continue	to
address	problems	as	they	are	found	in	these	specs.	Implementers	should	monitor	www-style	and/or	the	CSS	Working	Group	Blog	for	any	resulting	changes,	corrections,	or	clarifications.	The	following	specifications	are	considered	to	be	in	a	reliable	state,	meaning	they	have	largely	stable	implementations	and	specifications,	but	are	not	yet	at	the
Recommendation	level	due	to	minor	issues	or	the	need	for	additional	implementation	reports.	Media	Queries	Level	4	[MEDIAQUERIES-4]	Extends	and	supersedes	[CSS3-MEDIAQUERIES],	expanding	the	syntax,	deprecating	most	media	types,	and	introducing	new	media	features.	CSS	Scroll	Snap	Module	Level	1	[CSS-SCROLL-SNAP-1]	Contains
features	to	control	panning	and	scrolling	behavior	with	snap	positions.	CSS	Scrollbars	Styling	Module	Level	1	[CSS-SCROLLBARS-1]	Defines	properties	to	influence	the	visual	styling	of	scrollbars,	introducing	controls	for	their	color	and	width.	CSS	Grid	Layout	Module	Level	1	[CSS-GRID-1]	Introduces	a	two-dimensional	grid-based	layout	system,
optimized	for	user	interface	design.	In	the	grid	layout	model,	the	children	of	a	grid	container	can	be	positioned	into	arbitrary	slots	in	a	predefined	flexible	or	fixed-size	layout	grid.	CSS	Grid	Layout	Module	Level	2	[CSS-GRID-2]	Extends	and	supersedes	[CSS-GRID-1],	introducing	subgrids	for	managing	nested	markup	in	a	shared	grid	framework.	The
following	modules	have	completed	design	work,	and	are	fairly	stable,	but	have	not	received	much	testing	and	implementation	experience	yet.	We	hope	to	incorporate	them	into	the	official	definition	of	CSS	in	a	future	snapshot.	Media	Queries	Level	4	[MEDIAQUERIES-4]	Extends	and	supersedes	[CSS3-MEDIAQUERIES],	expanding	the	syntax,
deprecating	most	media	types,	and	introducing	new	media	features.	CSS	Display	Module	Level	3	[CSS-DISPLAY-3]	Replaces	CSS29.1.2,	9.2.1	(but	not	9.2.1.1),	9.2.2	(but	not	9.2.2.1),	9.2.3,	and	9.2.4	(and	lays	the	foundations	for	replacing	9.7),	defining	how	the	CSS	formatting	box	tree	is	generated	from	the	document	element	tree	and	defining	the
display	property	that	controls	it.	CSS	Writing	Modes	Level	4	[CSS-WRITING-MODES-4]	Extends	and	supersedes	[CSS-WRITING-MODES-3],	adding	more	options	for	vertical	writing.	CSS	Fragmentation	Module	Level	3	[CSS-BREAK-3]	Describes	the	fragmentation	model	that	partitions	a	flow	into	pages,	columns,	or	regions	and	defines	properties	that
control	it.	Extends	and	supersedes	CSS213.3.	CSS	Box	Alignment	Module	Level	3	[CSS-ALIGN-3]	Introduces	properties	to	control	the	alignment	of	boxes	within	their	containers	in	the	various	CSS	box	layout	models:	block	layout,	table	layout,	flex	layout,	and	grid	layout.	CSS	Shapes	Module	Level	1	[CSS-SHAPES-1]	Extends	floats	(CSS29.5)	to	effect
non-rectangular	wrapping	shapes.	CSS	Text	Module	Level	3	[CSS-TEXT-3]	Extends	and	supersedes	CSS216	excepting	16.3,	defining	properties	for	text	manipulation	and	specifying	their	processing	model.	It	covers	line	breaking,	justification	and	alignment,	white	space	handling,	and	text	transformation.	CSS	Text	Decoration	Module	Level	3	[CSS-
TEXT-DECOR-3]	Extends	and	supersedes	CSS216.3,	providing	more	control	over	text	decoration	lines	and	adding	the	ability	to	specify	text	emphasis	marks	and	text	shadows.	CSS	Masking	Module	Level	1	[CSS-MASKING-1]	Replaces	CSS211.1.2	and	introduces	more	powerful	ways	of	clipping	and	masking	content.	CSS	Scroll	Snap	Module	Level	1
[CSS-SCROLL-SNAP-1]	Contains	features	to	control	panning	and	scrolling	behavior	with	snap	positions.	CSS	Speech	Module	Level	1	[CSS-SPEECH-1]	Replaces	CSS2A,	overhauling	the	(non-normative)	speech	rendering	chapter.	CSS	View	Transitions	Module	Level	1	[CSS-VIEW-TRANSITIONS-1]	Defines	the	View	Transition	API,	along	with	associated
properties	and	pseudo-elements,	which	allows	developers	to	create	animated	visual	transitions	representing	changes	in	the	document	state.	Although	the	following	modules	have	been	widely	deployed	with	rough	interoperability,	their	details	are	not	fully	worked	out	or	sufficiently	well-specified	and	they	need	more	testing	and	bugfixing.	We	hope	to
incorporate	them	into	the	official	definition	of	CSS	in	a	future	snapshot.	CSS	Transitions	Level	1	[CSS-TRANSITIONS-1]	and	CSS	Animations	Level	1	[CSS-ANIMATIONS-1].	Introduces	mechanisms	for	transitioning	the	computed	values	of	CSS	properties	over	time.	CSS	Will	Change	Level	1	[CSS-WILL-CHANGE-1]	Introduces	a	performance	hint
property	called	will-change.	Filter	Effects	Module	Level	1	[FILTER-EFFECTS-1]	Introduces	filter	effects	as	a	way	of	processing	an	elements	rendering	before	it	is	displayed	in	the	document.	CSS	Font	Loading	Module	Level	3	[CSS-FONT-LOADING-3]	Introduces	events	and	interfaces	used	for	dynamically	loading	font	resources.	CSS	Box	Sizing	Level	3
[CSS-SIZING-3]	Overlays	and	extends	CSS10.,	expanding	the	value	set	of	the	sizing	properties,	introducing	more	precise	sizing	terminology,	and	defining	with	more	precision	and	detail	various	automatic	sizing	concepts	only	vaguely	defined	in	CSS2.	CSS	Transforms	Level	2	[CSS-TRANSFORMS-2]	Builds	upon	[CSS-TRANSFORMS-1]	to	add	new
transform	functions	and	properties	for	three-dimensional	transforms,	and	convenience	functions	for	simple	transforms.	CSS	Lists	and	Counters	Module	Level	3	[CSS-LISTS-3]	Contains	CSS	features	related	to	list	counters:	styling	them,	positioning	them,	and	manipulating	their	value.	CSS	Logical	Properties	and	Values	Level	1	[CSS-LOGICAL-1]
Introduces	logical	properties	and	values	that	provide	the	author	with	the	ability	to	control	layout	through	logical,	rather	than	physical,	direction	and	dimension	mappings.	Also	defines	logical	properties	and	values	for	the	features	defined	in	[CSS2].	These	properties	are	writing-mode	relative	equivalents	of	their	corresponding	physical	properties.	CSS
Positioned	Layout	Module	Level	3	[CSS-POSITION-3]	Contains	defines	coordinate-based	positioning	and	offsetting	schemes	of	CSS:	relative	positioning,	sticky	positioning,	absolute	positioning,	and	fixed	positioning.	Resize	Observer	[RESIZE-OBSERVER-1]	This	specification	describes	an	API	for	observing	changes	to	elements	principal	boxs	size.	Web
Animations	[WEB-ANIMATIONS-1]	Defines	a	model	for	synchronization	and	timing	of	changes	to	the	presentation	of	a	Web	page.	Also	defines	an	application	programming	interface	for	interacting	with	this	model.	CSS	Fonts	Module	Level	4	[CSS-FONTS-4]	Extends	and	supersedes	CSS	Fonts	3	and	provides	more	control	over	font	choice	and	feature
selection,	including	support	for	OpenType	variations.	CSS	Color	Adjustment	Module	Level	1	[CSS-COLOR-ADJUST-1]	This	module	introduces	a	model	and	controls	over	automatic	color	adjustment	by	the	user	agent	to	handle	user	preferences	and	device	output	optimizations.	CSS	Conditional	Rules	Module	Level	4	[CSS-CONDITIONAL-4]	Extends	CSS
Conditional	3	to	allow	testing	for	supported	selectors.	CSS	Cascading	and	Inheritance	Level	5	[CSS-CASCADE-5]	Extends	CSS	Cascade	4	to	add	cascade	layers.	Motion	Path	Module	Level	1	[MOTION-1]	This	module	allows	authors	to	position	any	graphical	object	and	animate	it	along	an	author	specified	path.	CSS	Scroll	Anchoring	Module	Level	1
[CSS-SCROLL-ANCHORING-1]	This	module	aims	to	minimize	content	shifts	by	locking	the	scroll	position	of	a	scroll	container	to	a	particular	anchor	element.	CSS	Object	Model	(CSSOM)	[CSSOM-1]	This	module	defines	APIs	for	parsing,	serializing,	and	manipulating	CSS,	Media	Queries,	and	Selectors.	CSS	Color	Module	Level	5	[CSS-COLOR-5]
Extends	CSS	Color	4	to	add	color	spaces	and	color	modification	functions.	Selectors	Level	4	[SELECTORS-4]	Extends	Selectors	Level	3	by	introducing	new	pseudo-classes,	pseudo-elements,	and	combinators,	enhancing	the	ability	to	select	elements	based	on	more	complex	criteria	and	states.	Cascading	Style	Sheets	does	not	have	versions	in	the
traditional	sense;	instead	it	has	levels.	Each	level	of	CSS	builds	on	the	previous,	refining	definitions	and	adding	features.	The	feature	set	of	each	higher	level	is	a	superset	of	any	lower	level,	and	the	behavior	allowed	for	a	given	feature	in	a	higher	level	is	a	subset	of	that	allowed	in	the	lower	levels.	A	user	agent	conforming	to	a	higher	level	of	CSS	is
thus	also	conformant	to	all	lower	levels.	CSS	Level	1	The	CSS	Working	Group	considers	the	CSS1	specification	to	be	obsolete.	CSS	Level	1	is	defined	as	all	the	features	defined	in	the	CSS1	specification	(properties,	values,	at-rules,	etc),	but	using	the	syntax	and	definitions	in	the	CSS2.1	specification.	CSS	Style	Attributes	defines	its	inclusion	in
element-specific	style	attributes.	CSS	Level	2	Although	the	CSS2	specification	is	technically	a	W3C	Recommendation,	it	passed	into	the	Recommendation	stage	before	the	W3C	had	defined	the	Candidate	Recommendation	stage.	Over	time	implementation	experience	and	further	review	has	brought	to	light	many	problems	in	the	CSS2	specification,	so
instead	of	expanding	an	already	unwieldy	errata	list,	the	CSS	Working	Group	chose	to	define	CSS	Level	2	Revision	1	(CSS2.1).	In	case	of	any	conflict	between	the	two	specs	CSS2.1	contains	the	definitive	definition.	Once	CSS2.1	became	Candidate	Recommendationeffectively	though	not	officially	the	same	level	of	stability	as	CSS2obsoleted	the	CSS2
Recommendation.	Features	in	CSS2	that	were	dropped	from	CSS2.1	should	be	considered	to	be	at	the	Candidate	Recommendation	stage,	but	note	that	many	of	these	have	been	or	will	be	pulled	into	a	CSS	Level	3	working	draft,	in	which	case	that	specification	will,	once	it	reaches	CR,	obsolete	the	definitions	in	CSS2.	The	CSS2.1	specification	defines
CSS	Level	2	and	the	CSS	Style	Attributes	specification	defines	its	inclusion	in	element-specific	style	attributes.	CSS	Level	3	CSS	Level	3	builds	on	CSS	Level	2	module	by	module,	using	the	CSS2.1	specification	as	its	core.	Each	module	adds	functionality	and/or	replaces	part	of	the	CSS2.1	specification.	The	CSS	Working	Group	intends	that	the	new
CSS	modules	will	not	contradict	the	CSS2.1	specification:	only	that	they	will	add	functionality	and	refine	definitions.	As	each	module	is	completed,	it	will	be	plugged	in	to	the	existing	system	of	CSS2.1	plus	previously-completed	modules.	From	this	level	on	modules	are	levelled	independently:	for	example	Selectors	Level	4	may	well	be	completed
before	CSS	Line	Module	Level	3.	Modules	with	no	CSS	Level	2	equivalent	start	at	Level	1;	modules	that	update	features	that	existed	in	CSS	Level	2	start	at	Level	3.	CSS	Level	4	and	beyond	There	is	no	CSS	Level	4.	Independent	modules	can	reach	level	4	or	beyond,	but	CSS	the	language	no	longer	has	levels.	("CSS	Level	3"	as	a	term	is	used	only	to
differentiate	it	from	the	previous	monolithic	versions.)	Not	all	implementations	will	implement	all	functionality	defined	in	CSS.	In	the	past,	the	Working	Group	published	a	few	Profiles,	which	were	meant	to	define	the	minimal	subset	of	CSS	that	various	classes	of	user	agents	were	expected	to	support.	This	effort	has	been	discontinued,	as	the	Working
Group	was	not	finding	it	effective	or	useful,	and	the	profiles	previously	defined	are	now	unmaintained.	Note:	Partial	implementations	of	CSS,	even	if	that	subset	is	an	official	profile,	must	follow	the	forward-compatible	parsing	rules	for	partial	implementations.	The	following	sections	define	several	conformance	requirements	for	implementing	CSS
responsibly,	in	a	way	that	promotes	interoperability	in	the	present	and	future.	So	that	authors	can	exploit	the	forward-compatible	parsing	rules	to	assign	fallback	values,	CSS	renderers	must	treat	as	invalid	(and	ignore	as	appropriate)	any	at-rules,	properties,	property	values,	keywords,	and	other	syntactic	constructs	for	which	they	have	no	usable	level
of	support.	In	particular,	user	agents	must	not	selectively	ignore	unsupported	property	values	and	honor	supported	values	in	a	single	multi-value	property	declaration:	if	any	value	is	considered	invalid	(as	unsupported	values	must	be),	CSS	requires	that	the	entire	declaration	be	ignored.	To	avoid	clashes	with	future	stable	CSS	features,	the	CSSWG
recommends	the	following	best	practices	for	the	implementation	of	unstable	features	and	proprietary	extensions	to	CSS:	Implementations	of	unstable	features	that	are	described	in	W3C	specifications	but	are	not	interoperable	should	not	be	released	broadly	for	general	use;	but	may	be	released	for	limited,	experimental	use	in	controlled	environments.
Why?	We	want	to	allow	both	authors	and	implementors	to	experiment	with	the	feature	and	give	feedback,	but	prevent	authors	from	relying	on	them	in	production	websites	and	thereby	accidentally	"locking	in"	(through	content	dependence)	certain	syntax	or	behavior	that	might	change	later.	For	example,	a	UA	could	release	an	unstable	features	for
experimentation	through	beta	or	other	testing-stage	builds;	behind	a	hidden	configuration	flag;	behind	a	switch	enabled	only	for	specific	testing	partners;	or	through	some	other	means	of	limiting	dependent	use.	A	CSS	feature	is	considered	unstable	until	its	specification	has	reached	the	Candidate	Recommendation	(CR)	stage	in	the	W3C	process.	In
exceptional	cases,	the	CSSWG	may	additionally,	by	an	officially-recorded	resolution,	add	pre-CR	features	to	the	set	that	are	considered	safe	to	release	for	broad	use.	See	4	Safe	to	Release	pre-CR	Exceptions.	Note:	Vendors	should	consult	the	WG	explicitly	and	not	make	assumptions	on	this	point,	as	a	pre-CR	spec	that	hasnt	changed	in	awhile	is	usually
more	out-of-date	than	stable.	To	avoid	clashes	with	future	CSS	features,	the	CSS2.1	specification	reserves	a	prefixed	syntax	[CSS2]	for	proprietary	and	experimental	extensions	to	CSS.	A	CSS	feature	is	a	proprietary	extension	if	it	is	meant	for	use	in	a	closed	environment	accessible	only	to	a	single	vendors	user	agent(s).	A	UA	should	support	such
proprietary	extensions	only	through	a	vendor-prefixed	syntax	and	not	expose	them	to	open	(multi-UA)	environments	such	as	the	World	Wide	Web.	Why?	The	prefixing	requirement	allows	shipping	specialized	features	in	closed	environments	without	conflicting	with	future	additions	to	standard	CSS.	The	restriction	on	exposure	to	open	systems	is	to
prevent	accidentally	causing	the	public	CSS	environment	to	depend	on	an	unstandardized	proprietary	extensions.	For	example,	Firefoxs	XUL-based	UI,	Apples	iTunes	UI,	and	Microsofts	Universal	Windows	Platform	app	use	extensions	to	CSS	implemented	by	their	respective	UAs.	So	long	as	these	UAs	do	not	allow	Web	content	to	access	these	features,
they	do	not	provide	an	opportunity	for	such	content	to	become	dependent	on	their	proprietary	extensions.	Even	if	a	feature	is	intended	to	eventually	be	used	in	the	Web,	if	it	hasnt	yet	been	standardized	it	should	still	not	be	exposed	to	the	Web.	If	a	feature	is	unstable	(i.e.	the	spec	has	not	yet	stabilized),	but	at	least	three	UAs	implement	the	feature(or
a	UA	has	broken	the	other	rules	and	shipped	for	broad	usean	unstable	or	otherwise	non-standard	feature	in	a	production	release),	and	the	implementations	have	rough	interoperability,	and	the	CSS	Working	Group	has	recorded	consensusthat	this	feature	should	exist	and	be	released,	implementers	may	ship	that	feature	unprefixed	in	broad-release
builds.	Rough	interoperability	is	satisfied	by	a	subjective	judgment	that	even	though	there	may	be	differences,	the	implementations	are	sufficiently	similar	to	be	used	in	production	websites	for	a	substantial	number	of	use	cases.	Note	that	the	CSSWG	must	still	be	consulted	to	ensure	coordination	across	vendors	and	to	ensure	coherency	review	by	the
CSS	experts	from	each	vendor.	Note	also	that	rough	interoperability	still	usually	means	painful	lack	of	interop	in	edge	(or	not-so-edge)	cases,	particularly	because	details	have	not	been	ironed	out	through	the	standards	review	process.	Why?	If	a	feature	is	sufficiently	popular	that	three	or	more	browsers	have	implemented	it	before	its	finished
standardization,	this	clause	allows	releasing	the	pressure	to	ship.	Also,	if	a	feature	has	already	escaped	into	the	wild	and	sites	have	started	depending	on	it,	pretending	its	still	experimental	doesnt	help	anyone.	Allowing	others	to	ship	unprefixed	recognizes	that	the	feature	is	now	de	facto	standardized	and	encourages	authors	to	write	cross-platform
code.	When	exposing	such	a	standards-track	unstable	feature	to	the	Web	in	a	production	release,	implementations	should	support	both	vendor-prefixed	and	unprefixed	syntaxes	for	the	feature.	Once	the	feature	has	stabilized	and	the	implementation	is	updated	to	match	interoperable	behavior,	support	for	the	vendor-prefixed	syntax	should	be	removed.
Why?	This	is	recommended	so	that	authors	can	use	the	unprefixed	syntax	to	target	all	implementations,	but	when	necessary,	can	target	specific	implementations	to	work	around	incompatibilities	among	implementations	as	they	get	ironed	out	through	the	standards/bugfixing	process.	The	lack	of	a	phase	where	only	the	prefixed	syntax	is	supported
greatly	reduces	the	risk	of	stylesheets	being	written	with	only	the	vendor-prefixed	syntax.	This	in	turn	allows	UA	vendors	to	retire	their	prefixed	syntax	once	the	feature	is	stable,	with	a	lower	risk	of	breaking	existing	content.	It	also	reduces	the	need	occasionally	felt	by	some	vendors	to	support	a	feature	with	the	prefix	of	another	vendor,	due	to
content	depending	on	that	syntax.	Anyone	promoting	unstable	features	to	authors	should	document	them	using	their	standard	unprefixed	syntax,	and	avoid	encouraging	the	use	of	the	vendor-prefixed	syntax	for	any	purpose	other	than	working	around	implementation	differences.	In	order	to	preserve	the	open	nature	of	CSS	as	a	technology,	vendors
should	make	it	possible	for	other	implementors	to	freely	implement	any	features	that	they	do	ship.	To	this	end,	they	should	provide	spec-editing	and	testing	resources	to	complete	standardization	of	such	features,	and	avoid	other	obstacles	(e.g.,	platform	dependency,	licensing	restrictions)	to	their	competitors	shipping	the	feature.	Once	a	specification
reaches	the	Candidate	Recommendation	stage,	implementers	should	release	an	unprefixed	implementation	of	any	CR-level	feature	they	can	demonstrate	to	be	correctly	implemented	according	to	spec,	and	should	avoid	exposing	a	prefixed	variant	of	that	feature.	To	establish	and	maintain	the	interoperability	of	CSS	across	implementations,	the	CSS
Working	Group	requests	that	non-experimental	CSS	renderers	submit	an	implementation	report	(and,	if	necessary,	the	testcases	used	for	that	implementation	report)	to	the	W3C	before	releasing	an	unprefixed	implementation	of	any	CSS	features.	Testcases	submitted	to	W3C	are	subject	to	review	and	correction	by	the	CSS	Working	Group.	Further
information	on	submitting	testcases	and	implementation	reports	can	be	found	from	on	the	CSS	Working	Groups	website	at	.	Questions	should	be	directed	to	the	public-css-testsuite@w3.org	mailing	list.	The	following	features	have	been	explicitly	and	proactively	cleared	by	the	CSS	Working	Group	for	broad	release	prior	to	the	spec	reaching	Candidate
Recommendation.	See	3.2.1	Experimentation	and	Unstable	Features.	The	following	features	have	been	explicitly	and	retroactively	cleared	by	the	CSS	Working	Group	for	broad	release	prior	to	the	spec	reaching	Candidate	Recommendation:	Everything	in	CSS	Animations	Level	1	and	CSS	Transitions	Level	1.	These	sections	are	non-normative.	=	~=	1st
2d	matrix	2nd	3rd	4th	absolute	length	absolute	length	unit	absolutely	positioned	element	abstract	dimensions	:active	activeborder	activecaption	active	duration	active	(pseudo-class)	actual	value	in	css-cascade-4	in	css21	additive	tuple	adjoining	margins	advance	measure	:after	after	after-change	style	aliceblue	alignment	baseline	alignment	container
alignment	context	alignment	subject	'all'	media	group	alphabetic	baseline	ambiguous	image	url	an+b	ancestor	anchor	anchor	unit	animation	origin	animation-tainted	anonymous	in	css-display-3,	for	CSS	in	css21	anonymous	box	anonymous	inline	boxes	antiquewhite	apply	to	appworkspace	aqua	aquamarine	are	a	valid	escape	aspect	value	atomic	inline
atomic	inline	box	atomic	inline-level	box	at-rule	attr()	attribute	'audio'	media	group	auditory	icon	augmented	grid	aural	box	model	author	authoring	tool	author	origin	author-origin	author	presentational	hint	origin	author	style	sheet	automatic	column	position	automatic	grid	position	automatic	numbering	automatic	placement	automatic	position
automatic	row	position	auto-placement	auto-placement	cursor	available	font	faces	available	grid	space	avoid	break	values	axis-lock	axis	value	azure	backdrop	background	background	color	background	image	background	image	layer	background	painting	area	background	positioning	area	backslash	escapes	baseline	baseline	alignment	baseline
alignment	preference	baseline	content-alignment	baseline	self-alignment	baseline	set	baseline-sharing	group	baseline	table	base	size	bearing	angle	:before	before	before-change	style	before	flag	beige	bfc	bidi	formatting	characters	bidi-isolate	bidi-isolated	bidi	isolation	bidi	paragraph	bidirectionality	bidirectionality	(bidi)	bi-orientational	bi-
orientational	transform	bisque	'bitmap'	media	group	black	blanchedalmond	()-block	[]-block	block	in	css-display-3	in	css21	{}-block	block	at-rule	block	axis	block-axis	block	box	in	css-display-3	in	css21	block	container	block	container	box	in	css-display-3	in	css21	block	dimension	block	end	block-end	block	flow	direction	block	formatting	context	block
formatting	context	root	blockification	blockify	block	layout	block-level	block-level	box	in	css-display-3	in	css21	block-level	content	block-level	element	block	scripts	block	size	block-size	block	start	block-start	blue	blueviolet	blur	radius	boolean	context	border	box	border	color	border	edge	border	image	border	image	area	border	image	region	border::of
a	box	border	radius	border	style	border	width	bottom	box	box	alignment	properties	box::border	box::content	box::content	height	box::content	width	box-corner	box	fragment	box::margin	box::overflow	box::padding	box	tree	break	brown	burlywood	buttonface	buttonhighlight	buttonshadow	buttontext	cadetblue	cancel	canonical	unit	canvas	canvas
background	canvas	surface	captiontext	captures	snap	positions	cascade	in	css-cascade-4	in	css21	cascade-dependent	keyword	cascaded	independently	cascaded	value	cascade	origin	central	baseline	character	character	encoding	character	map	"@charset"	chartreuse	check	if	three	code	points	would	start	an	ident	sequence	check	if	three	code	points
would	start	a	number	check	if	three	code	points	would	start	a	unicode-range	check	if	two	code	points	are	a	valid	escape	child	child	combinator	child	selector	chinese	chocolate	circled-lower-latin	clamp	a	grid	area	clearance.	clipping	path	clipping	region	in	css-masking-1	in	css21	closest-side	clustered	scripts	collapse	collapsed	collapsed	flex	item
collapsed	grid	track	collapsed	gutter	collapsed	track	collapse	through	collapsible	white	space	collapsing	margin	color	color	stop	color	stop	list	color	transition	hint	column	box	column	break	column	gap	column	height	column	rule	column	width	combinator	combinators	combined	duration	compatible	baseline	alignment	preferences	compatible	units
complete	completed	transition	component	value	composite	face	computed	computed	track	list	computed	value	in	css-cascade-4	in	css21	concrete	object	size	conditional	group	rule	conditional	import	conditionally	hang	conformance	consecutive	constraint	rectangle	consume	a	block	consume	a	block's	contents	consume	a	component	value	consume	a
declaration	consume	a	function	consume	a	list	of	component	values	consume	a	list	of	declarations	consume	a	list	of	rules	consume	an	at-rule	consume	an	escaped	code	point	consume	an	ident-like	token	consume	an	ident	sequence	consume	a	number	consume	a	numeric	token	consume	a	qualified	rule	consume	a	simple	block	consume	a	string	token
consume	a	style	block's	contents	consume	a	stylesheet's	contents	consume	a	token	consume	a	unicode-range	token	consume	a	url	token	consume	comments	consume	the	next	input	token	consume	the	remnants	of	a	bad	declaration	consume	the	remnants	of	a	bad	url	consume	the	value	of	a	unicode-range	descriptor	contain	constraint	containing	block
in	css-display-3	in	css21	containing	block	chain	containing	block	for	all	descendants	containing	block::initial	containment	content	content-based	minimum	size	in	css-flexbox-1	in	css-grid-1	content	box	content	distribution	content-distribution	content-distribution	properties	content	edge	content	language	content::of	a	box	content::rendered	content	size
suggestion	in	css-flexbox-1	in	css-grid-1	content	writing	system	continuous	media	'continuous'	media	group	convert	a	string	to	a	number	coordinated	self-alignment	preference	coral	cornflowerblue	cornsilk	counter()	counters	counter	style	counter	symbol	cover	constraint	crimson	cross	axis	cross-axis	cross-axis	baseline	set	cross	dimension	cross-end
cross	size	cross-size	cross	size	property	cross-start	css	bracketed	range	notation	css-connected	css	feature	queries	cssfontfacerule	cssfontfeaturevaluesrule	css	ident	css	identifier	css	ident	sequence	css	qualified	name	css	value	definition	syntax	css-wide	keywords	cubic	bzier	easing	function	currentcolor	current	input	code	point	current	input	token
current	transformation	matrix	current	value	cursive	cursive	script	custom	property	cyan	darkblue	darkcyan	darkgoldenrod	darkgray	darkgreen	darkgrey	darkkhaki	darkmagenta	darkolivegreen	darkorange	darkorchid	darkred	darksalmon	darkseagreen	darkslateblue	darkslategray	darkslategrey	darkturquoise	darkviolet	declaration	in	css-syntax-3,	for
CSS	in	css21	declaration	block	declared	declared	value	decode	bytes	decorating	box	deeppink	deepskyblue	default	face	default	namespace	default	object	size	default	sizing	algorithm	default	style	sheet	definite	definite	column	position	definite	column	span	definite	grid	position	definite	grid	span	definite	position	definite	row	position	definite	row	span
definite	size	definite	span	descendant	descendant-selectors	descriptor	descriptor	declarations	destination	determine	the	fallback	encoding	device	pixel	dice	digit	dimension	dimgray	dimgrey	directional	embedding	directional	override	discard	a	mark	discard	a	token	discard	whitespace	display	type	distributed	alignment	distribute	extra	space	document
in	css-speech-1	in	css-style-attr	document	language	document	order	document	tree	document	white	space	document	white	space	characters	dodgerblue	dominant	baseline	easing	function	effective	character	map	element	in	css-display-3,	for	CSS	in	css21	element::following	element::preceding	element	tree	emoji	presentation	participating	code	points
empty	in	css-syntax-3,	for	token	stream	in	css21	em	(unit)	encapsulation	contexts	end	ending	point	ending	shape	ending	token	endmost	end	time	end	value	environment	encoding	eof	code	point	escaping	establish	an	independent	formatting	context	establish	an	orthogonal	flow	established	an	independent	formatting	context	establishes	an	independent
formatting	context	establishing	an	independent	formatting	context	exact	matching	expanded	name	explicit	grid	explicit	grid	column	explicit	grid	properties	explicit	grid	row	explicit	grid	track	explicitly-assigned	line	name	ex	(unit)	fallback	alignment	false	in	the	negative	range	fantasy	farthest-side	fetch	a	font	fetch	an	@import	fictional	tag	sequence
filter	code	points	filtered	code	points	filter	primitive	filter	primitive	attributes	filter	primitive	subregion	filter	primitive	tree	filter	region	find	the	matching	font	faces	fire	a	font	load	event	firebrick	:first	first	available	font	first-baseline	alignment	first-baseline	content-alignment	first	baselines	first-baseline	self-alignment	first	baseline	set	:first-child	first-
child	first	cross-axis	baseline	set	first	formatted	line	:first-letter	first-letter	:first-line	first-line	first	main-axis	baseline	set	first	symbol	value	fixed	sizing	function	flex	base	size	flex	basis	flex	container	flex	direction	flex	factor	flex	factor	sum	flex	formatting	context	flex	fraction	flex	grow	factor	flexible	flexible	length	in	css-flexbox-1	in	css-grid-1	flexible
sizing	function	flexible	tracks	flex	item	flex	layout	flex-level	flex	line	flex	shrink	factor	float	area	float	rules	floralwhite	flow	layout	flow	of	an	element	flow-relative	flow-relative	direction	:focus	focus	focus	(pseudo-class)	following	element	font	block	period	font	download	timer	font	failure	period	font	feature	value	declaration	font-feature-value-type	font-
relative	lengths	font	source	font	specific	font-stretch	font	swap	period	footnote	forced	break	forced	break	values	forced	line	break	forced	paragraph	break	forestgreen	formatting	context	in	css-display-3	in	css21	formatting	structure	forward-compatible	parsing	fragment	fragmentainer	fragmentation	fragmentation	break	fragmentation	container
fragmentation	context	fragmentation	direction	fragmentation	root	fragmented	flow	free	space	fuchsia	full-size	full-size	kana	full-width	fully	inflexible	function	functional	notation	gainsboro	generate	a	counter	generate	a	counter	representation	generate	baselines	generated	content	ghostwhite	go	gold	goldenrod	gradient-average-color	gradient	box
gradient	center	gradient	function	gradient	line	grapheme	cluster	gray	graytext	green	greenyellow	grey	grid	grid	area	grid	cell	grid	column	grid	column	line	grid	container	grid	formatting	context	grid	item	grid	item	placement	algorithm	grid	layout	grid	layout	algorithm	grid-level	grid	line	'grid'	media	group	grid-modified	document	order	grid	order
grid	placement	grid-placement	property	grid	position	grid	row	grid	row	line	grid	sizing	algorithm	grid	span	grid	track	growth	limit	guaranteed-invalid	value	gutter	half-width	hang	hanging	glyph	height	hex	digit	highlight	highlighttext	honeydew	horizontal	axis	horizontal	block	flow	horizontal	dimension	horizontal	offset	horizontal-only	horizontal	script
horizontal	typographic	mode	horizontal	writing	mode	hotpink	:hover	hover	(pseudo-class)	hyphenate	hyphenation	hyphenation	opportunity	hyphen-separated	matching	hypothetical	cross	size	hypothetical	fr	size	hypothetical	main	size	ident	ident	code	point	identifier	in	css-values-3,	for	CSS	in	css21	identity	transform	function	ident	sequence	ident-
start	code	point	ignore	ignored	illegal	implicit	grid	implicit	grid	column	implicit	grid	lines	implicit	grid	properties	implicit	grid	row	implicit	grid	track	implicitly-assigned	line	name	implicitly-named	area	@import	important	import	conditions	inactiveborder	inactivecaption	inactivecaptiontext	indefinite	indefinite	size	independent	formatting	context
index	indianred	indigo	infinitely	growable	in	flow	in-flow	in	css-display-3	in	css21	infobackground	infotext	inherit	in	css-cascade-4	in	css-cascade-4,	for	CSS	in	css21	inheritance	in	css-cascade-4	in	css-cascade-4,	for	CSS	inherited	property	inherited	value	initial	containing	block	in	css-display-3	in	css21	initial	free	space	initial	representation	for	the
counter	value	initial	value	in	css-cascade-4	in	css21	inline	in	css-display-3	in	css21	inline	axis	inline-axis	inline	base	direction	inline	block	inline-block	inline	block	box	inline	box	in	css-display-3	in	css21	inline	dimension	inline	end	inline-end	inline	formatting	context	inline-level	inline-level	box	in	css-display-3	in	css21	inline-level	content	inline-level
element	inline	size	inline-size	inline	start	inline-start	inlinification	inlinify	inner	box-shadow	inner	display	type	inner	edge	input	progress	value	input	stream	installed	font	fallback	integer	intended	direction	intended	direction	and	end	position	intended	end	position	'interactive	media	group	internal	ruby	box	internal	ruby	element	internal	table	box	in
css-display-3	in	css21	internal	table	element	in	css-display-3	in	css21	interpreter	in	css-namespaces-3	in	css-style-attr	intrinsic	dimensions	intrinsic	sizing	function	invalid	invalid	at	computed-value	time	invalid	image	invalid	rule	error	invisible	isolated	sequence	isolation	iteration	order	ivory	japanese	justification	opportunity	keyword	khaki	known
korean	:lang	lang	(pseudo-class)	last-baseline	alignment	last-baseline	content-alignment	last	baselines	last-baseline	self-alignment	last	baseline	set	last	cross-axis	baseline	set	last	main-axis	baseline	set	lavender	lavenderblush	lawngreen	laying	out	in-place	layout	containment	layout	containment	box	layout-internal	:left	left	leftover	space	legacy	name
alias	legacy	shorthand	legacy	value	alias	lemonchiffon	letter	in	css-syntax-3	in	css-text-3	lightblue	lightcoral	lightcyan	lightgoldenrodyellow	lightgray	lightgreen	lightgrey	lightpink	lightsalmon	lightseagreen	lightskyblue	lightslategray	lightslategrey	light	source	lightsteelblue	lightyellow	lime	limegreen	limited	max-content	contribution	limited	min-
content	contribution	linear	easing	function	linear	timing	function	line	box	line	break	in	css-break-3	in	css-text-3	line	breaking	line	breaking	process	line-left	linen	line	name	line	name	set	line	orientation	line-over	line-relative	line-relative	direction	line-right	line-under	:link	link	(pseudo-class)	list-item	list	properties	loading	image	local	coordinate
system	local	url	flag	logical	height	logical	width	longhand	longhand	property	lowercase	letter	magenta	main	axis	main-axis	main-axis	baseline	set	main	dimension	main-end	main	size	main-size	main	size	property	main-start	margin	box	margin	edge	margin::of	a	box	mark	marked	indexes	maroon	mask	border	image	mask	border	image	area	mask	image
mask	layer	image	mask	painting	area	mask-position	mask	positioning	area	mask-size	match	matching	transition	delay	matching	transition	duration	matching	transition-property	value	matching	transition	timing	function	max	cross	size	max	cross	size	property	maximum	allowed	code	point	max	inner	height	max	inner	width	max	main	size	max	main	size
property	max	track	sizing	function	may	media	media	condition	media-dependent	import	media	feature	media	group	media	query	media	query	list	media	query	modifier	media	type	mediumaquamarine	mediumblue	mediumorchid	mediumpurple	mediumseagreen	mediumslateblue	mediumspringgreen	mediumturquoise	mediumvioletred	menu	menutext
message	entity	midnightblue	min	cross	size	min	cross	size	property	minimum	contribution	min	inner	height	min	inner	width	min	main	size	min	main	size	property	mintcream	min	track	sizing	function	mistyrose	moccasin	monolithic	monospace	multicol	container	multi-col	line	multicol	line	multi-column	container	multi-column	formatting	context	multi-
column	layout	multi-column	line	multi-column	spanner	multi-column	spanning	element	multi-line	flex	container	multiple	declarations	multiply	must	must	not	named	cell	token	named	grid	area	namespace	prefix	name-start	code	point	natural	aspect	ratio	natural	dimension	natural	end-point	natural	height	natural	size	natural	width	navajowhite	navy
nearest	neighbor	newline	next	input	code	point	next	input	token	next-sibling	combinator	next	token	non-ascii	code	point	non-ascii	ident	code	point	'none'::as	display	value	non-overridable	counter-style	names	non-printable	code	point	non-replaced	non-replaced	element	normal	normalize	into	a	token	stream	null	cell	token	number	numeric	data	types
objects	object	size	negotiation	occupied	oldlace	olive	olivedrab	opacity	operating	coordinate	space	optimal	viewing	region	optional	orange	orangered	orchid	order-modified	document	order	in	css-display-3	in	css-flexbox-1	orthogonal	orthogonal	flow	other	space	separators	outer	box-shadow	outer	display	type	outer	edge	outline	out	of	flow	in	css-
display-3	in	css21	out-of-flow	output	of	the	cascade	output	progress	value	over	overflow	overflow	alignment	overflow	columns	padding	box	padding	edge	padding::of	a	box	@page	page	area	page	box	page	break	page-context	paged	media	'paged'	media	group	page	selector	pagination	paint	containment	paint	containment	box	palegoldenrod	palegreen
paleturquoise	palevioletred	papayawhip	parent	parent	box	parse	parse	a	block's	contents	parse	a	comma-separated	list	according	to	a	css	grammar	parse	a	comma-separated	list	of	component	values	parse	a	component	value	parse	a	css	stylesheet	parse	a	declaration	parse	a	list	parse	a	list	of	component	values	parse	a	list	of	declarations	parse	a	list	of
rules	parse	a	rule	parse	a	style	block's	contents	parse	a	stylesheet	parse	a	stylesheet's	contents	parse	error	parse	something	according	to	a	css	grammar	parsing	a	list	participates	in	baseline	alignment	pass	through	filter	peachpuff	pending	on	the	environment	pending-substitution	value	percentage	peru	physical	physical	bottom	physical	dimensions
physical	direction	physical	left	physical	right	physical	top	physical	unit	pink	pixel	pixel	unit	plum	positional	alignment	positioned	element/box	positioning	scheme	post-multiplied	post-multiply	powderblue	preceding	element	pre-multiplied	pre-multiply	preserved	tokens	preserved	white	space	primary	filter	primitive	tree	principal	block-level	box
principal	box	principal	writing	mode	process	propagate	propagation	proper	table	child	proper	table	row	parent	property	in	css-cascade-4,	for	CSS	in	css21	property	declarations	pseudo-classes	pseudo-classes:::active	pseudo-classes:::focus	pseudo-classes:::hover	pseudo-classes:::lang	pseudo-classes:::link	pseudo-classes:::visited	pseudo-class:::first
pseudo-class:::left	pseudo-class:::right	pseudo-elements	pseudo-elements:::after	pseudo-elements:::before	pseudo-elements:::first-letter	pseudo-elements:::first-line	purple	quad	width	qualified	rule	range	context	recommended	reconsume	the	current	input	code	point	reconsume	the	current	input	token	red	reference	box	in	css-shapes-1,	for	in	css-
transforms-1	reference	pixel	region	break	relative	length	relative	length	unit	relative	positioning	relative	units	remaining	fragmentainer	extent	remaining	free	space	rendered	content	render	with	a	fallback	font	face	render	with	an	invisible	fallback	font	face	replaced	replaced	element	in	css-display-3	in	css21	representation	required	reset	implicitly
reset-only	sub-property	re-snap	resolved	type	restore	a	mark	reversing-adjusted	start	value	reversing	shortening	factor	:right	right	root	root	element	rosybrown	row	group	box	row	groups	royalblue	rule	run-in	in	css-display-3	in	css21	run-in	box	run-in	sequence	running	transition	saddlebrown	salmon	sandybrown	sans-serif	scaled	flex	shrink	factor
scope	screen	reader	scrollbar	scroll	snap	scroll	snap	area	scroll	snap	container	scroll	snapport	scroll	snap	position	seagreen	seashell	segment	break	selector	selector::match	selector::subject	of	self-alignment	self-alignment	properties	semitone	sequence	of	simple	selectors	serialize	an	value	serif	set	entries	set	explicitly	shall	shall	not	shared	alignment
context	sheet	shorthand	shorthand	property	in	css-cascade-4	in	css21	should	should	not	sibling	sideways	typesetting	sienna	silver	simple	block	simple	selector	single-line	flex	container	size	containment	size	containment	box	sizing	as	if	empty	sizing	function	skyblue	slateblue	slategray	slategrey	small	small	kana	snow	soft	wrap	break	soft	wrap
opportunity	source	source	document	spaces	space-separated	matching	space	to	fill	span	count	specified	size	specified	size	suggestion	in	css-flexbox-1	in	css-grid-1	specified	value	in	css-cascade-4	in	css21	'speech'	media	group	spread	break	spread	distance	springgreen	stacking	context	stack	level	start	starting	point	startmost	starts	with	an	ident
sequence	starts	with	a	number	starts	with	a	valid	escape	start	time	start	value	start	with	an	ident	sequence	start	with	a	number	statement	at-rule	'static'	media	group	static-position	rectangle	in	css-align-3	in	css-flexbox-1	steelblue	step	easing	function	step	position	steps	stop	or	comma	stretched	strictness	value	stroke	bounding	box	structural	pseudo-
classes	strut	size	stuck	on	the	environment	style	attribute	style	change	event	style	rule	style	sheet	in	css-namespaces-3	in	css-speech-1	in	css21	stylesheet	subject	(of	selector)	subjects	of	the	selector	sub-property	subsequent-sibling	combinator	substitute	a	var()	support	in	css-conditional-3,	for	CSS	in	css-fonts-4	supports	queries	switch	the	fontfaceset
to	loaded	switch	the	fontfaceset	to	loading	synthesize	baseline	synthesized	baseline	system	fonts	table	caption	box	table	element	tables	tabs	tab	size	tab	stop	tabular	container	'tactile'	media	group	tan	target	main	size	teal	text/css	text	node	text	sequence	textual	data	types	thistle	threeddarkshadow	threedface	threedhighlight	threedlightshadow
threedshadow	timing	function	tokenization	tokenize	tokenizer	tokens	token	stream	tomato	top	tracking	track	list	track	section	track	sizing	algorithm	track	sizing	function	transfer	function	element	transfer	function	element	attributes	transferred	size	suggestion	in	css-flexbox-1	in	css-grid-1	transformable	element	transformation	matrix	transformed
element	transitionable	transition	origin	transparent	trash	token	triangle	trinary	turquoise	type	selector	typeset	sideways	typesetting	sideways	typesetting	upright	typeset	upright	typographic	character	typographic	character	unit	typographic	letter	unit	typographic	mode	ua	in	css-speech-1	in	css21	in	css21	ua	origin	ua-origin	ua	style	sheet	under
unforced	break	universal	selector	unknown	unoccupied	upper-alpha-legal	uppercase	letter	upright	typesetting	url	use	a	negative	sign	used	value	in	css-cascade-4	in	css21	in	css21	user	user	agent	in	css-speech-1	in	css21	in	css21	user-agent	origin	user-agent	style	sheet	user	coordinate	system	user	origin	user-origin	user	style	sheet	uses	a	negative
sign	valid	image	validity	valid	style	sheet	value	value	definition	syntax	var()	substitution	vertical	axis	vertical	block	flow	vertical	dimension	vertical	offset	vertical-only	vertical	script	vertical	typographic	mode	vertical	writing	mode	viewport	viewport-percentage	lengths	violet	:visited	visited	(pseudo-class)	visual	angle	unit	visual	formatting	model
'visual'	media	group	volume	wheat	white	whitesmoke	white	space	whitespace	white	space	characters	width	window	windowframe	windowtext	word	separator	word-separator	character	would	start	an	ident	sequence	would	start	a	number	would	start	a	unicode-range	wrap	in	css-shapes-1	in	css-text-3	wrapping	in	css-shapes-1	in	css-text-3	writing	mode
x-axis	x-height	y-axis	yellow	yellowgreen	absolute	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	add	additive	alias	all	allow-end	all-petite-caps	all-scroll	all-small-caps	alpha	alphabetic	alternate	alternate-reverse	always	in	css-scroll-snap-1,	for	scroll-snap-stop	in	css-speech-1,	for	speak	annotation()	anywhere	in	css-text-3,	for	line-break
in	css-text-3,	for	overflow-wrap	arabic-indic	armenian	in	css-counter-styles-3,	for	in	css21	aural	auto	in	css-align-3,	for	align-self	in	css-align-3,	for	justify-self	in	css-backgrounds-3,	for	background-size	in	css-backgrounds-3,	for	border-image-width	in	css-break-3,	for	break-before,	break-after	in	css-break-3,	for	break-inside,	page-break-inside	in	css-
counter-styles-3,	for	@counter-style/range	in	css-counter-styles-3,	for	@counter-style/speak-as	in	css-flexbox-1,	for	align-items,	align-self	in	css-flexbox-1,	for	flex-basis	in	css-fonts-4,	for	@font-face/font-display	in	css-fonts-4,	for	font-kerning	in	css-fonts-4,	for	font-optical-sizing	in	css-fonts-4,	for	font-synthesis-position	in	css-fonts-4,	for	font-synthesis-
small-caps	in	css-fonts-4,	for	font-synthesis-style	in	css-fonts-4,	for	font-synthesis-weight	in	css-grid-1,	for	in	css-grid-1,	for	grid-template-columns,	grid-template-rows	in	css-images-3,	for	image-rendering	in	css-multicol-1,	for	column-count	in	css-multicol-1,	for	column-fill	in	css-multicol-1,	for	column-width	in	css-scroll-snap-1,	for	scroll-padding,	scroll-
padding-inline,	scroll-padding-inline-start,	scroll-padding-inline-end,	scroll-padding-block,	scroll-padding-block-start,	scroll-padding-block-end	in	css-speech-1,	for	speak	in	css-speech-1,	for	voice-duration	in	css-text-3,	for	hyphens	in	css-text-3,	for	line-break	in	css-text-3,	for	text-align-last	in	css-text-3,	for	text-justify	in	css-text-decor-3,	for	text-
underline-position	in	css-ui-3,	for	caret-color	in	css-ui-3,	for	cursor	in	css-will-change-1,	for	will-change	in	filter-effects-1,	for	color-interpolation-filters	auto-fill	auto-fit	[auto-flow	&&	dense?]	?	/	avoid	avoid-column	avoid-page	avoid-region	backwards	balance	balance-all	baseline	bengali	bidi-override	blink	block	bold	bolder	border-box	both	bottom
braille	break-all	break-spaces	break-word	in	css-text-3,	for	overflow-wrap	in	css-text-3,	for	word-break	bullets	cambodian	capitalize	caption	cell	center	in	css-align-3,	for	,	,	justify-self,	align-self,	justify-content,	align-content	in	css-backgrounds-3,	for	background-position	in	css-flexbox-1,	for	align-content	in	css-flexbox-1,	for	align-items,	align-self	in	css-
flexbox-1,	for	justify-content	in	css-scroll-snap-1,	for	scroll-snap-align	in	css-speech-1,	for	voice-balance	in	css-text-3,	for	text-align	in	css-transforms-1,	for	transform-origin	ch	character-variant(#)	child	ch	unit	circle	cjk-decimal	cjk-earthly-branch	cjk-heavenly-stem	cjk-ideographic	clip	clone	close-quote	closest-corner	closest-side	cm	coarse	collapse
color	color-burn	color-dodge	col-resize	column	column-reverse	common-ligatures	condensed	contain	in	css-backgrounds-3,	for	background-size	in	css-images-3,	for	object-fit	content	in	css-contain-1,	for	contain	in	css-flexbox-1,	for	flex-basis	content-box	contents	context-menu	contextual	copy	cover	in	css-backgrounds-3,	for	background-size	in	css-
images-3,	for	object-fit	crisp-edges	crosshair	cursive	cyclic	dark	in	css-fonts-4,	for	base-palette	in	css-fonts-4,	for	font-palette	darken	dashed	decimal	in	css-counter-styles-3,	for	in	css21	decimal-leading-zero	in	css-counter-styles-3,	for	in	css21	default	deg	dense	devanagari	diagonal-fractions	difference	digits	digits	?	digits	?	disc	in	css-counter-styles-3,
for	in	css21	disclosure-closed	disclosure-open	discretionary-ligatures	distribute	dot	dotted	double	double-circle	dpcm	dpi	dppx	each-line	ease	ease-in	ease-in-out	ease-out	ellipse	ellipsis	em	embed	embossed	emoji	em	unit	end	e-resize	ethiopic-numeric	evenodd	ew-resize	ex	exclude	exclusion	expanded	extends	extra-condensed	extra-expanded	ex	unit
fallback	fantasy	farthest-corner	farthest-side	fast	in	css-speech-1,	for	voice-rate	in	mediaqueries-4,	for	@media/update	female	fill	fill-box	filled	fine	first	first	baseline	fit-content()	fixed	flex	flex-end	in	css-align-3,	for	,	,	justify-self,	align-self,	justify-content,	align-content	in	css-flexbox-1,	for	align-content	in	css-flexbox-1,	for	align-items,	align-self	in	css-
flexbox-1,	for	justify-content	flex-start	in	css-align-3,	for	,	,	justify-self,	align-self,	justify-content,	align-content	in	css-flexbox-1,	for	align-content	in	css-flexbox-1,	for	align-items,	align-self	in	css-flexbox-1,	for	justify-content	flip	flow	flow-root	force-end	forwards	fr	from-image	fr	unit	full-size-kana	full-width	generic(fangsong)	generic(kai)	generic(khmer-
mul)	generic(nastaliq)	georgian	in	css-counter-styles-3,	for	in	css21	grab	grabbing	grad	grid	in	css-display-3,	for	display,	in	css-grid-1,	for	display	/	[auto-flow	&&	dense?]	?	/	groove	gujarati	gurmukhi	handheld	hanging	hard-light	hebrew	help	hidden	high	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	high-quality	hiragana	hiragana-
iroha	historical-forms	historical-ligatures	horizontal-tb	hover	hue	hz	icon	in	infinite	inherit	initial	inline	inline-block	inline-flex	inline-grid	in	css-display-3,	for	display,	in	css-grid-1,	for	display	inline-table	in	css-display-3,	for	display,	in	css21	inset	[|]	&&	?	&&	?	inter-character	interlace	intersect	inter-word	invert	in	css-ui-3,	for	outline-color	in	css21
isolate	isolate-override	italic	japanese-formal	japanese-informal	jis04	jis78	jis83	jis90	jump-both	jump-end	jump-none	jump-start	justify	justify-all	kannada	katakana	katakana-iroha	keep-all	khmer	khz	korean-hangul-formal	korean-hanja-formal	korean-hanja-informal	landscape	lao	last	last	baseline	layout	left	in	css-align-3,	for	justify-content,	justify-self,
justify-items	in	css-backgrounds-3,	for	background-position	in	css-break-3,	for	break-before,	break-after	in	css-speech-1,	for	voice-balance	in	css-text-3,	for	text-align	in	css-text-decor-3,	for	text-emphasis-position	in	css-text-decor-3,	for	text-underline-position	in	css-transforms-1,	for	transform-origin	leftwards	legacy	{2}	light	in	css-fonts-4,	for	base-
palette	in	css-fonts-4,	for	font-palette	lighten	lighter	linear	linearrgb	[?	?	?]+	[/]?	line-through	lining-nums	list-item	literal-punctuation	local	loose	loud	low	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	lower-alpha	lower-armenian	lowercase	lower-greek	in	css-counter-styles-3,	for	in	css21	lower-latin	in	css-counter-styles-3,	for	in
css21	lower-roman	in	css-counter-styles-3,	for	in	css21	ltr	luminance	luminosity	malayalam	male	mandatory	manual	margin-box	match-parent	match-source	math	max-content	medium	in	css-backgrounds-3,	for	,	border-width,	border-top-width,	border-left-width,	border-bottom-width,	border-right-width,	border	in	css-speech-1,	for	pause-before,	pause-
after	in	css-speech-1,	for	rest-before,	rest-after	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	in	css-speech-1,	for	voice-rate	in	css-speech-1,	for	voice-volume	menu	message-box	min-content	minmax()	mixed	mm	moderate	mongolian	monospace	move	ms	multiply	myanmar	ne-resize	nesw-resize	neutral	never	no-clip	no-close-quote	no-
common-ligatures	no-contextual	no-discretionary-ligatures	no-drop	no-historical-ligatures	none	in	css-animations-1,	for	animation-fill-mode	in	css-animations-1,	for	animation-name	in	css-backgrounds-3,	for	,	border-style,	border-top-style,	border-left-style,	border-bottom-style,	border-right-style,	border	in	css-backgrounds-3,	for	background-image	in
css-backgrounds-3,	for	box-shadow	in	css-contain-1,	for	contain	in	css-display-3,	for	display,	in	css-flexbox-1,	for	flex	in	css-fonts-4,	for	font-kerning	in	css-fonts-4,	for	font-optical-sizing	in	css-fonts-4,	for	font-size-adjust	in	css-fonts-4,	for	font-synthesis-position	in	css-fonts-4,	for	font-synthesis-small-caps	in	css-fonts-4,	for	font-synthesis-style	in	css-fonts-
4,	for	font-synthesis-weight	in	css-fonts-4,	for	font-variant	in	css-fonts-4,	for	font-variant-ligatures	in	css-grid-1,	for	grid-template	in	css-grid-1,	for	grid-template-areas	in	css-grid-1,	for	grid-template-rows,	grid-template-columns	in	css-images-3,	for	image-orientation	in	css-images-3,	for	object-fit	in	css-multicol-1,	for	column-span	in	css-scroll-snap-1,	for
scroll-snap-align	in	css-scroll-snap-1,	for	scroll-snap-type	in	css-shapes-1,	for	shape-outside	in	css-speech-1,	for	pause-before,	pause-after	in	css-speech-1,	for	rest-before,	rest-after	in	css-speech-1,	for	voice-stress	in	css-text-3,	for	hanging-punctuation	in	css-text-3,	for	hyphens	in	css-text-3,	for	text-justify	in	css-text-3,	for	text-transform	in	css-text-
decor-3,	for	text-decoration-line	in	css-text-decor-3,	for	text-emphasis-style	in	css-transitions-1,	for	transition-property	in	css-ui-3,	for	cursor	in	css-writing-modes-4,	for	text-combine-upright	in	mediaqueries-4,	for	@media/hover	in	mediaqueries-4,	for	@media/overflow-block	in	mediaqueries-4,	for	@media/overflow-inline	in	mediaqueries-4,	for
@media/pointer	in	mediaqueries-4,	for	@media/update	'none'::as	border	style	nonzero	no-open-quote	no-punctuation	no-repeat	normal	in	compositing-1,	for	in	css-align-3,	for	align-self	in	css-align-3,	for	justify-content,	align-content	in	css-align-3,	for	justify-self	in	css-align-3,	for	row-gap,	column-gap,	gap	in	css-animations-1,	for	animation-direction	in

css-fonts-4,	for	font-feature-settings	in	css-fonts-4,	for	font-kerning	in	css-fonts-4,	for	font-language	override	in	css-fonts-4,	for	font-palette	in	css-fonts-4,	for	font-style	in	css-fonts-4,	for	font-variant	in	css-fonts-4,	for	font-variant-alternates	in	css-fonts-4,	for	font-variant-caps	in	css-fonts-4,	for	font-variant-east-asian	in	css-fonts-4,	for	font-variant-emoji	in
css-fonts-4,	for	font-variant-ligatures	in	css-fonts-4,	for	font-variant-numeric	in	css-fonts-4,	for	font-variant-position	in	css-fonts-4,	for	font-weight	in	css-fonts-4,	for	font-width	in	css-scroll-snap-1,	for	scroll-snap-stop	in	css-speech-1,	for	speak-as	in	css-speech-1,	for	voice-rate	in	css-speech-1,	for	voice-stress	in	css-text-3,	for	letter-spacing	in	css-text-3,
for	line-break	in	css-text-3,	for	overflow-wrap	in	css-text-3,	for	white-space	in	css-text-3,	for	word-break	in	css-text-3,	for	word-spacing	in	css-writing-modes-4,	for	unicode-bidi	not	not-allowed	nowrap	in	css-flexbox-1,	for	flex-wrap	in	css-text-3,	for	white-space	n-resize	ns-resize	numbers	numeric	nw-resize	nwse-resize	objectboundingbox	oblique	?	old
oldstyle-nums	only	open	open-quote	optional	ordinal	oriya	ornaments()	outset	over	overlay	overline	p3	padding-box	page	paged	paint	paused	pc	persian	petite-caps	pixelated	plaintext	pointer	portrait	pre	pre-line	preserve	pre-wrap	print	progress	progressive	projection	proportional-nums	proportional-width	proximity	pt	px	q	rad	rec2020	recto	reduced
region	rem	rem	unit	repeat	repeat-x	repeat-y	reverse	revert	ridge	right	in	css-align-3,	for	justify-content,	justify-self,	justify-items	in	css-backgrounds-3,	for	background-position	in	css-break-3,	for	break-before,	break-after	in	css-speech-1,	for	voice-balance	in	css-text-3,	for	text-align	in	css-text-decor-3,	for	text-emphasis-position	in	css-text-decor-3,	for
text-underline-position	in	css-transforms-1,	for	transform-origin	rightwards	round	row	in	css-flexbox-1,	for	flex-direction	in	css-grid-1,	for	grid-auto-flow	row-resize	row-reverse	rtl	ruby	ruby-base	ruby-base-container	ruby-text	ruby-text-container	run-in	running	s	safe	sans-serif	saturation	scale-down	screen	in	compositing-1,	for	in	mediaqueries-4,	for
@media	scroll	scroll-position	self-end	self-start	semi-condensed	semi-expanded	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	se-resize	serif	sesame	sideways	sideways-lr	sideways-right	sideways-rl	silent	simp-chinese-formal	simp-chinese-informal	simplified	size	slashed-zero	slice	slow	in	css-speech-1,	for	voice-rate	in	mediaqueries-4,
for	@media/update	small-caps	small-caption	smooth	soft	soft-light	solid	space	space-around	space-between	space-evenly	span	&&	[||]	span	&&	[||]	speech	spell-out	square	in	css-counter-styles-3,	for	in	css21	s-resize	srgb	stacked-fractions	start	status-bar	step-end	step-start	stretch	strict	in	css-contain-1,	for	contain	in	css-text-3,	for	line-break	+
stroke-box	strong	styleset(#)	stylistic()	sub	subtract	super	swap	swash()	sw-resize	symbolic	system-ui	table	in	css-display-3,	for	display,	in	css21	table-caption	in	css-display-3,	for	display,	in	css21	table-cell	in	css-display-3,	for	display,	in	css21	table-column	in	css-display-3,	for	display,	in	css21	table-column-group	in	css-display-3,	for	display,	in	css21
table-footer-group	in	css-display-3,	for	display,	in	css21	table-header-group	in	css-display-3,	for	display,	in	css21	table-row	in	css-display-3,	for	display,	in	css21	table-row-group	in	css-display-3,	for	display,	in	css21	tabular-nums	tamil	telugu	text	in	css-fonts-4,	for	font-variant-emoji	in	css-ui-3,	for	cursor	thai	thick	thin	tibetan	titling-caps	top	|	trad-
chinese-formal	trad-chinese-informal	traditional	triangle	tty	turn	tv	ui-monospace	ui-rounded	ui-sans-serif	ui-serif	ultra-condensed	ultra-expanded	under	underline	unicase	unicode	unsafe	unset	upper-alpha	upper-armenian	uppercase	upper-latin	in	css-counter-styles-3,	for	in	css21	upper-roman	in	css-counter-styles-3,	for	in	css21	upright
userspaceonuse	verso	vertical-lr	vertical-rl	vertical-text	vh	view-box	visible	vmax	vmin	vw	wait	weak	words	wrap	wrap-reverse	w-resize	x	x-fast	x-high	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	x-loud	x-low	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	x-slow	x-soft	x-strong	x-weak	y	young	zoom-in	zoom-out
Special	thanks	to	Florian	Rivoal	for	creating	the	initial	draft	of	the	3.2.1	Experimentation	and	Unstable	Features	recommendations.	Conformance	requirements	are	expressed	with	a	combination	of	descriptive	assertions	and	RFC	2119	terminology.	The	key	words	MUST,	MUST	NOT,	REQUIRED,	SHALL,	SHALL	NOT,	SHOULD,	SHOULD	NOT,
RECOMMENDED,	MAY,	and	OPTIONAL	in	the	normative	parts	of	this	document	are	to	be	interpreted	as	described	in	RFC	2119.	However,	for	readability,	these	words	do	not	appear	in	all	uppercase	letters	in	this	specification.	All	of	the	text	of	this	specification	is	normative	except	sections	explicitly	marked	as	non-normative,	examples,	and	notes.
[RFC2119]Examples	in	this	specification	are	introduced	with	the	words	for	example	or	are	set	apart	from	the	normative	text	with	class="example",	like	this:	Informative	notes	begin	with	the	word	Note	and	are	set	apart	from	the	normative	text	with	class="note",	like	this:	Note,	this	is	an	informative	note.Advisements	are	normative	sections	styled	to
evoke	special	attention	and	are	set	apart	from	other	normative	text	with	,	like	this:	UAs	MUST	provide	an	accessible	alternative.	A	style	sheet	is	conformant	to	this	specification	if	all	of	its	statements	that	use	syntax	defined	in	this	module	are	valid	according	to	the	generic	CSS	grammar	and	the	individual	grammars	of	each	feature	defined	in	this
module.	A	renderer	is	conformant	to	this	specification	if,	in	addition	to	interpreting	the	style	sheet	as	defined	by	the	appropriate	specifications,	it	supports	all	the	features	defined	by	this	specification	by	parsing	them	correctly	and	rendering	the	document	accordingly.	However,	the	inability	of	a	UA	to	correctly	render	a	document	due	to	limitations	of
the	device	does	not	make	the	UA	non-conformant.	(For	example,	a	UA	is	not	required	to	render	color	on	a	monochrome	monitor.)	An	authoring	tool	is	conformant	to	this	specification	if	it	writes	style	sheets	that	are	syntactically	correct	according	to	the	generic	CSS	grammar	and	the	individual	grammars	of	each	feature	in	this	module,	and	meet	all
other	conformance	requirements	of	style	sheets	as	described	in	this	module.	So	that	authors	can	exploit	the	forward-compatible	parsing	rules	to	assign	fallback	values,	CSS	renderers	must	treat	as	invalid	(and	ignore	as	appropriate)	any	at-rules,	properties,	property	values,	keywords,	and	other	syntactic	constructs	for	which	they	have	no	usable	level
of	support.	In	particular,	user	agents	must	not	selectively	ignore	unsupported	component	values	and	honor	supported	values	in	a	single	multi-value	property	declaration:	if	any	value	is	considered	invalid	(as	unsupported	values	must	be),	CSS	requires	that	the	entire	declaration	be	ignored.Once	a	specification	reaches	the	Candidate	Recommendation
stage,	non-experimental	implementations	are	possible,	and	implementors	should	release	an	unprefixed	implementation	of	any	CR-level	feature	they	can	demonstrate	to	be	correctly	implemented	according	to	spec.	To	establish	and	maintain	the	interoperability	of	CSS	across	implementations,	the	CSS	Working	Group	requests	that	non-experimental
CSS	renderers	submit	an	implementation	report	(and,	if	necessary,	the	testcases	used	for	that	implementation	report)	to	the	W3C	before	releasing	an	unprefixed	implementation	of	any	CSS	features.	Testcases	submitted	to	W3C	are	subject	to	review	and	correction	by	the	CSS	Working	Group.	Center	elementshorizontally	and	vertically	To	horizontally
center	a	block	element	(like),	use	margin:	auto;Setting	the	width	of	the	element	will	prevent	it	from	stretching	out	to	the	edges	of	its	container.The	element	will	then	take	up	the	specified	width,	and	the	remaining	space	will	be	split	equally	between	the	two	margins:	This	div	element	is	centered.	.center{margin:	auto;	width:	50%;	border:	3px	solid
green;	padding:	10px;}Try	it	Yourself	Note:	Center	aligning	has	no	effect	if	the	width	property	is	not	set	(or	set	to	100%).	Center	Align	TextTo	just	center	the	text	inside	an	element,	use	text-align:	center;	.center	{	text-align:	center;	border:	3px	solid	green;}Try	it	Yourself	Tip:	For	more	examples	on	how	to	align	text,	see	the	CSS	Text	chapter.	To
center	an	image,	set	left	and	right	margin	to	auto	and	make	it	into	a	block	element:	img{display:	block;	margin-left:	auto;	margin-right:	auto;width:	40%;}Try	it	Yourself	Left	and	Right	Align	-	Using	positionOne	method	for	aligning	elements	is	to	use	position:	absolute;:	In	my	younger	and	more	vulnerable	years	my	father	gave	me	some	advice	that	I've
been	turning	over	in	my	mind	ever	since..right{position:	absolute;	right:	0px;width:	300px;border:	3px	solid	#73AD21;padding:	10px;}Try	it	Yourself	Note:	Absolute	positioned	elements	are	removed	from	the	normal	flow,	and	can	overlap	elements.	Left	and	Right	Align	-	Using	floatAnother	method	for	aligning	elements	is	to	use	the	float
property:.right{float:	right;	width:	300px;border:	3px	solid	#73AD21;padding:	10px;}Try	it	Yourself	The	clearfix	HackNote:	If	an	element	is	taller	than	the	element	containing	it,	and	it	is	floated,	it	will	overflow	outside	of	its	container.	You	can	use	the	"clearfix	hack"	to	fix	this	(see	example	below).	Then	we	can	add	the	clearfix	hack	to	the	containing
element	to	fix	this	problem:	Center	Vertically	-	Using	paddingThere	are	many	ways	to	center	an	element	vertically	in	CSS.	A	simple	solution	is	to	use	top	and	bottom	padding:	I	am	vertically	centered.	.center	{padding:	70px	0;border:	3px	solid	green;}Try	it	Yourself	To	center	both	vertically	and	horizontally,	use	padding	and	text-align:	center:	I	am
vertically	and	horizontally	centered.	.center	{	padding:	70px	0;border:	3px	solid	green;	text-align:	center;}Try	it	Yourself	Center	Vertically	-	Using	line-heightAnother	trick	is	to	use	the	line-height	property	with	a	value	that	is	equal	to	the	height	property:	I	am	vertically	and	horizontally	centered.	.center	{	line-height:	200px;height:	200px;	border:	3px
solid	green;text-align:	center;}/*	If	the	text	has	multiple	lines,	add	the	following:	*/.center	p	{line-height:	1.5;display:	inline-block;vertical-align:	middle;}Try	it	Yourself	Center	Vertically	-	Using	position	&	transformIf	padding	and	line-height	are	not	options,	another	solution	is	to	use	positioning	and	the	transform	property:	I	am	vertically	and
horizontally	centered.	.center	{	height:	200px;position:	relative;	border:	3px	solid	green;	}.center	p	{margin:	0;	position:	absolute;	top:	50%;	left:	50%;	transform:	translate(-50%,	-50%);}Try	it	Yourself	Tip:	You	will	learn	more	about	the	transform	property	in	our	2D	Transforms	Chapter.	Center	Vertically	-	Using	FlexboxYou	can	also	use	flexbox	to
center	things.	Just	note	that	flexbox	is	not	supported	in	IE10	and	earlier	versions:	I	am	vertically	and	horizontally	centered.	.center	{	display:	flex;	justify-content:	center;	align-items:	center;	height:	200px;	border:	3px	solid	green;	}Try	it	Yourself	This	blog	will	discuss	6	techniques	(in	order	of	adherence	to	best	practices)that	can	be	used	to	center
align	an	element	and	when	to	use	each	one.	Here,	center	align	refers	to	placing	the	element	at	the	horizontal	and	vertical	center	of	its	parent.	.center	class	represents	the	element	to	be	center	aligned.parent	represents	its	parent	element.	1.	Using	Transform	When	to	use:When	the	width	and	height	of	the	element	are	not	knownCard	like	modals	where
there	are	multiple	child	elements	with	one	focussed	element	at	the	center.	The	idea	is	to	use	absolute	positioning	with	top	and	left	-	50%	and	then	applying	negative	transform.	The	value	used	in	top	and	left	are	resolved	based	on	dimensions	of	the	parent	while	the	value	in	the	translate	method	is	resolved	based	on	the	dimensions	of	the	element
itself..center	{	position:	absolute;	top:	50%;	left:	50%;	transform:	translate(-50%,	-50%);}	2.	Using	Flex	When	to	use:When	there	is	one	or	more	elements	to	be	centered.When	the	child	elements	are	dynamic	and	their	sizes	are	not	known.When	there	are	a	row	of	items	that	need	to	be	centered	like	in	a	footer	The	idea	is	to	make	the	parent	container	a
flexbox	and	center	the	element	along	the	horizontal	and	vertical	directions	using	flex	properties	as	follows..parent	{	display:	flex;	justify-content:	center;	align-items:	center;}	When	there	are	multiple	elements	that	need	to	be	stacked	one	above	the	other	such	that	the	stack	is	at	the	center,	we	simply	add	the	following	line:	3.	Using	Negative	Margin
When	to	use:When	the	height	and	width	of	the	element	are	known.	The	idea	is	to	again	use	absolute	positioning	similar	to	the	transform	technique	but	we	apply	a	negative	margin	of	half	the	element's	width	and	height	instead	of	translate.$w:	200px;	//	SCSS	Variable$h:	100px;	//	SCSS	Variable.center	{	position:	absolute;	top:	50%;	left:	50%;	margin:
-50px	-100px;	//	Negative	margin	of	half	the	//	width	and	height	}	To	make	this	code	more	generic,	we	use	the	calc()	property	as	follows:	(#{$h}	/	2)	-	Half	the	height(#{$h}	/	2)	*	-1)	-	Negated	value	of	half	the	heightWhich	gives	us:	margin:	calc((#{$h}	/	2)	*	-1)	calc((#{$w}	/	2)	*	-1);	4.	Using	Grid	I	recently	discovered	this	cool	technique	from	css-
tricks.com	When	to	use:When	there	is	only	one	child	element	that	needs	to	be	centered.	The	idea	is	to	create	a	grid	container	and	set	the	margin	to	auto.	In	a	non-grid	container,	when	margin	is	set	to	auto,	margin-top	and	bottom	take	the	value	0.	However,	in	a	grid	container,	margin-top	and	bottom	is	assigned	the	available	space	evenly,	thus
centering	the	element..parent	{	display:	grid;}.center	{	margin:	auto;}	Another	way	to	center	using	grid,	pointed	out	by	Jacob:.parent	{	display:	grid;	place-items:	center;}	5.	Using	Padding	This	technique	is	not	recommended	for	center-align	but	it	works.	When	to	use:When	the	height	of	the	parent	element	is	known/fixed.	When	the	height	of	the
center	element	is	flexible.	The	idea	is	to	set	a	fixed	vertical	padding	for	the	container	with	fixed	height	is	known	and	allow	the	child	element	to	occupy	max	height	and	margin	auto..parent	{	height:	600px;	//Fixed	height	padding:	200px	0;	//Fixed	vertical	padding}.center{	margin:	0	auto;	height:	100%;	//	Child	takes	max	height}	6.	Using	Table-cell	This
technique	is	very	rarely	used	today	and	may	raise	eyebrows.	However,	it	does	work.	The	idea	is	to	force	the	parent	to	behave	like	a	table	cell	using	display.	We	then	use	vertical	align	property	for	vertical	centering	and	margin	auto	for	horizontal	centering..parent	{	display:	table-cell;	vertical-align:	middle;}.center{	margin:	auto;}	This	concludes	the	6
ways	to	center	align	elements.	Bonus	-	Horizontal	Centering	Horizontal	centering	is	often	used	in	title	styles	and	footers	in	combination	with	an	even	padding	or	margin.	Using	text-align	When	to	use:When	the	center	element	is	text	content	/	inline-*	type	elementInline-*	includes	inline,	inline-block,	inline-flex,	inline-table	etc..parent	{	text-align:
center;}	It	can	also	center	block	type	child	elements	but	it	is	not	a	recommended	practice.	Using	margin	When	to	use:When	the	center	element	is	a	block	element.center	{	margin:	0	auto;}	Here	is	a	working	Codepen	demo	of	all	the	above	techniques.	TL;	DR:	Here	is	a	concise	cheatsheet	for	your	reference.	Please	feel	free	to	download	and	share.	Let
me	know	in	the	comments	if	there	are	any	more	techniques	that	you	have	used/explored.	Also,	follow	me	on	Twitter	for	more	dev	content!	Style	sheet	languageThis	article	is	about	the	markup	styling	language.	For	other	uses,	see	CSS	(disambiguation)."Pseudo-element"	redirects	here.	For	pseudoelement	symbols	in	chemistry,	see	Skeletal	formula
Pseudoelement	symbols.This	article	needs	to	be	updated.	Please	help	update	this	article	to	reflect	recent	events	or	newly	available	information.	(November	2024)Cascading	Style	Sheets	(CSS)Logo	by	The	CSS-Next	Community	Group[1]Example	of	CSS	source	codeFilename	extension.cssInternet	mediatypetext/cssUniform	Type
Identifier(UTI)public.cssDevelopedbyWorld	Wide	Web	Consortium	(W3C)Initial	release17December	1996;	28	years	ago(1996-12-17)Latest	releaseCSS	3	is	being	developed	as	multiple	separate	modules.	Regular	snapshots	summarize	their	status.7December	2023;	18	months	ago(2023-12-07)	Type	of	formatStyle	sheet	languageContainerforStyle	rules
for	HTML	elementsContainedbyHTML	DocumentsOpen	format?YesWebsitew3.org/TR/CSS/#cssCascading	Style	SheetsStyle	sheetCSS	Zen	GardenConceptsAnimationsBox	modelFlexboxGridImage	replacementPhilosophiesTablelessResponsive"Holy	grail"ToolsSassLessStylusComparisonsStylesheet	languagesCascading	Style	SheetsvteHTMLDynamic
HTMLHTML5articleaudiocanvasvideoXHTMLBasicMobile	ProfileHTML	elementmetadiv	and	spanblinkmarqueeHTML	attributealt	attributeHTML	frameHTML	editorCharacter	encodingsnamed	charactersUnicodeLanguage	codeDocument	Object	ModelBrowser	Object	ModelStyle	sheetsCSSFont	familyWeb
colorsJavaScriptWebCLHTMXWeb3DWebGLWebGPUWebXRW3CValidatorWHATWGQuirks	modeWeb	storageRendering	engineComparisonsDocument	markup	languagesComparison	of	browser	enginesvteCascading	Style	Sheets	(CSS)	is	a	style	sheet	language	used	for	specifying	the	presentation	and	styling	of	a	document	written	in	a	markup
language	such	as	HTML	or	XML	(including	XML	dialects	such	as	SVG,	MathML	or	XHTML).[2]	CSS	is	a	cornerstone	technology	of	the	World	Wide	Web,	alongside	HTML	and	JavaScript.[3]CSS	is	designed	to	enable	the	separation	of	content	and	presentation,	including	layout,	colors,	and	fonts.[4]	This	separation	can	improve	content	accessibility,	since
the	content	can	be	written	without	concern	for	its	presentation;	provide	more	flexibility	and	control	in	the	specification	of	presentation	characteristics;	enable	multiple	web	pages	to	share	formatting	by	specifying	the	relevant	CSS	in	a	separate	.css	file,	which	reduces	complexity	and	repetition	in	the	structural	content;	and	enable	the	.css	file	to	be
cached	to	improve	the	page	load	speed	between	the	pages	that	share	the	file	and	its	formatting.Separation	of	formatting	and	content	also	makes	it	feasible	to	present	the	same	markup	page	in	different	styles	for	different	rendering	methods,	such	as	on-screen,	in	print,	by	voice	(via	speech-based	browser	or	screen	reader),	and	on	Braille-based	tactile
devices.	CSS	also	has	rules	for	alternative	formatting	if	the	content	is	accessed	on	a	mobile	device.[5]The	name	cascading	comes	from	the	specified	priority	scheme	to	determine	which	declaration	applies	if	more	than	one	declaration	of	a	property	match	a	particular	element.	This	cascading	priority	scheme	is	predictable.The	CSS	specifications	are
maintained	by	the	World	Wide	Web	Consortium	(W3C).	Internet	media	type	(MIME	type)	text/css	is	registered	for	use	with	CSS	by	RFC	2318	(March	1998).	The	W3C	operates	a	free	CSS	validation	service	for	CSS	documents.[6]In	addition	to	HTML,	other	markup	languages	support	the	use	of	CSS	including	XHTML,	plain	XML,	SVG,	and	XUL.	CSS	is
also	used	in	the	GTK	widget	toolkit.CSS	has	a	simple	syntax	and	uses	a	number	of	English	keywords	to	specify	the	names	of	various	style	properties.Main	article:	Style	sheet	(web	development)A	style	sheet	consists	of	a	list	of	rules.	Each	rule	or	rule-set	consists	of	one	or	more	selectors,	and	a	declaration	block."CSS	class"	redirects	here.	For	non-CSS
use	of	element	classes	in	HTML,	see	class	attribute	(HTML).In	CSS,	selectors	declare	which	part	of	the	markup	a	style	applies	to	by	matching	tags	and	attributes	in	the	markup	itself.Selectors	may	apply	to	the	following:all	elements	of	a	specific	type,	e.g.	the	second-level	headers	h2elements	specified	by	attribute,	in	particular:id:	an	identifier	unique
within	the	document,	denoted	in	the	selector	language	by	a	hash	prefix	e.g.	#idclass:	an	identifier	that	can	annotate	multiple	elements	in	a	document,	denoted	by	a	dot	prefix	e.g.	.classname	(the	phrase	"CSS	class",	although	sometimes	used,	is	a	misnomer,	as	element	classesspecified	with	the	HTML	class	attributeis	a	markup	feature	that	is	distinct
from	browsers'	CSS	subsystem	and	the	related	W3C/WHATWG	standards	work	on	document	styles;	see	RDF	and	microformats	for	the	origins	of	the	"class"	system	of	the	Web	content	model)elements	depending	on	how	they	are	placed	relative	to	others	in	the	document	tree.Classes	and	IDs	are	case-sensitive,	start	with	letters,	and	can	include
alphanumeric	characters,	hyphens,	and	underscores.	A	class	may	apply	to	any	number	of	instances	of	any	element.	An	ID	may	only	be	applied	to	a	single	element.Pseudo-classes	are	used	in	CSS	selectors	to	permit	formatting	based	on	information	that	is	not	contained	in	the	document	tree.One	example	of	a	widely	used	pseudo-class	is	:hover,	which
identifies	content	only	when	the	user	"points	to"	the	visible	element,	usually	by	holding	the	mouse	cursor	over	it.	It	is	appended	to	a	selector	as	in	a:hover	or	#elementid:hover.A	pseudo-class	classifies	document	elements,	such	as	:link	or	:visited,	whereas	a	pseudo-element	makes	a	selection	that	may	consist	of	partial	elements,	such	as	::first-line	or
::first-letter.[7]	Note	the	distinction	between	the	double-colon	notation	used	for	pseudo-elements	and	the	single-colon	notation	used	for	pseudo-classes.Multiple	simple	selectors	may	be	joined	using	combinators	to	specify	elements	by	location,	element	type,	id,	class,	or	any	combination	thereof.[8]	The	order	of	the	selectors	is	important.	For	example,
div	.myClass	{color:	red;}	applies	to	all	elements	of	class	myClass	that	are	inside	div	elements,	whereas	.myClass	div	{color:	red;}	applies	to	all	div	elements	that	are	inside	elements	of	class	myClass.	This	is	not	to	be	confused	with	concatenated	identifiers	such	as	div.myClass	{color:	red;}	which	applies	to	div	elements	of	class	myClass.The	following
table	provides	a	summary	of	selector	syntax	indicating	usage	and	the	version	of	CSS	that	introduced	it.[9]PatternMatchesFirst	definedin	CSS	levelEan	element	of	type	E1E:linkan	E	element	that	is	the	source	anchor	of	a	hyperlink	whose	target	is	either	not	yet	visited	(:link)	or	already	visited	(:visited)1E:visitedE:activean	E	element	during	certain	user
actions1E:hover2E:focusE::first-linethe	first	formatted	line	of	an	E	element1E::first-letterthe	first	formatted	letter	of	an	E	element1.call	elements	with	class="c"1#myidthe	element	with	id="myid"1E.warningan	E	element	whose	class	is	"warning"	(the	document	language	specifies	how	class	is	determined)1E#myidan	E	element	with	ID	equal	to
"myid"1.c#myidthe	element	with	class="c"	and	ID	equal	to	"myid"1E	Fan	F	element	descendant	of	an	E	element1*any	element2E[foo]an	E	element	with	a	"foo"	attribute2E[foo="bar"]an	E	element	whose	"foo"	attribute	value	is	exactly	equal	to	"bar"2E[foo~="bar"]an	E	element	whose	"foo"	attribute	value	is	a	list	of	whitespace-separated	values,	one	of
which	is	exactly	equal	to	"bar"2E[foo|="en"]an	E	element	whose	"foo"	attribute	has	a	hyphen-separated	list	of	values	beginning	(from	the	left)	with	"en"2E:first-childan	E	element,	first	child	of	its	parent2E:lang(fr)an	element	of	type	E	in	language	"fr"	(the	document	language	specifies	how	language	is	determined)2E::beforegenerated	content	before	an
E	element's	content2E::aftergenerated	content	after	an	E	element's	content2E	>	Fan	F	element	child	of	an	E	element2E	+	Fan	F	element	immediately	preceded	by	an	E	element2E[foo^="bar"]an	E	element	whose	"foo"	attribute	value	begins	exactly	with	the	string	"bar"3E[foo$="bar"]an	E	element	whose	"foo"	attribute	value	ends	exactly	with	the
string	"bar"3E[foo*="bar"]an	E	element	whose	"foo"	attribute	value	contains	the	substring	"bar"3E:rootan	E	element,	root	of	the	document3E:nth-child(n)an	E	element,	the	n-th	child	of	its	parent3E:nth-last-child(n)an	E	element,	the	n-th	child	of	its	parent,	counting	from	the	last	one3E:nth-of-type(n)an	E	element,	the	n-th	sibling	of	its	type3E:nth-last-
of-type(n)an	E	element,	the	n-th	sibling	of	its	type,	counting	from	the	last	one3E:last-childan	E	element,	last	child	of	its	parent3E:first-of-typean	E	element,	first	sibling	of	its	type3E:last-of-typean	E	element,	last	sibling	of	its	type3E:only-childan	E	element,	only	child	of	its	parent3E:only-of-typean	E	element,	only	sibling	of	its	type3E:emptyan	E	element
that	has	no	children	(including	text	nodes)3E:targetan	E	element	being	the	target	of	the	referring	URI3E:enableda	user	interface	element	E	that	is	enabled3E:disableda	user	interface	element	E	that	is	disabled3E:checkeda	user	interface	element	E	that	is	checked	(for	instance	a	radio	button	or	checkbox)3E:not(s)an	E	element	that	does	not	match
simple	selector	s3E	~	Fan	F	element	preceded	by	an	E	element3E:has(s)an	E	element	that	contains	an	element	matching	simple	selector	s4A	declaration	block	consists	of	a	pair	of	braces	({})	enclosing	a	semicolon-separated	list	of	declarations.[10]Each	declaration	itself	consists	of	a	property,	a	colon	(:),	and	a	value.	Optional	white-space	may	be
around	the	declaration	block,	declarations,	colons,	and	semi-colons	for	readability.[11]Properties	are	specified	in	the	CSS	standard.	Each	property	has	a	set	of	possible	values.	Some	properties	can	affect	any	type	of	element,	and	others	apply	only	to	particular	groups	of	elements.[12][13]Values	may	be	keywords,	such	as	"center"	or	"inherit",	or
numerical	values,	such	as	200px	(200	pixels),	50vw	(50	percent	of	the	viewport	width)	or	80%	(80	percent	of	the	parent	element's	width).Color	values	can	be	specified	with	keywords	(e.g.	"red"),	hexadecimal	values	(e.g.	#FF0000,	also	abbreviated	as	#F00),	RGB	values	on	a	0	to	255	scale	(e.g.	rgb(255,	0,	0)),	RGBA	values	that	specify	both	color	and
alpha	transparency	(e.g.	rgba(255,	0,	0,	0.8)),	or	HSL	or	HSLA	values	(e.g.	hsl(0	100%	50%),	hsl(0	100%	50%	/	0.8)).[14]Non-zero	numeric	values	representing	linear	measures	must	include	a	length	unit,	which	is	either	an	alphabetic	code	or	abbreviation,	as	in	200px	or	50vw;	or	a	percentage	sign,	as	in	80%.	Some	units	cm	(centimetre);	in	(inch);	mm
(millimetre);	pc	(pica);	and	pt	(point)	are	absolute,	which	means	that	the	rendered	dimension	does	not	depend	upon	the	structure	of	the	page;	others	em	(em);	ex	(ex)	and	px	(pixel)[clarification	needed]	are	relative,	which	means	that	factors	such	as	the	font	size	of	a	parent	element	can	affect	the	rendered	measurement.	These	eight	units	were	a
feature	of	CSS	1[15]	and	retained	in	all	subsequent	revisions.	The	proposed	CSS	Values	and	Units	Module	Level	3	will,	if	adopted	as	a	W3C	Recommendation,	provide	seven	further	length	units:	ch;	Q;	rem;	vh;	vmax;	vmin;	and	vw.[16]Before	CSS,	nearly	all	presentational	attributes	of	HTML	documents	were	contained	within	the	HTML	markup.	All
font	colors,	background	styles,	element	alignments,	borders,	and	sizes	had	to	be	explicitly	described,	often	repeatedly,	within	the	HTML.	CSS	lets	authors	move	much	of	that	information	to	another	file,	the	style	sheet,	resulting	in	considerably	simpler	HTML.	And	additionally,	as	more	and	more	devices	are	able	to	access	responsive	web	pages,
different	screen	sizes	and	layouts	begin	to	appear.	Customizing	a	website	for	each	device	size	is	costly	and	increasingly	difficult.	The	modular	nature	of	CSS	means	that	styles	can	be	reused	in	different	parts	of	a	site	or	even	across	sites,	promoting	consistency	and	efficiency.For	example,	headings	(h1	elements),	sub-headings	(h2),	sub-sub-headings
(h3),	etc.,	are	defined	structurally	using	HTML.	In	print	and	on	the	screen,	choice	of	font,	size,	color	and	emphasis	for	these	elements	is	presentational.Before	CSS,	document	authors	who	wanted	to	assign	such	typographic	characteristics	to,	say,	all	h2	headings	had	to	repeat	HTML	presentational	markup	for	each	occurrence	of	that	heading	type.	This
made	documents	more	complex,	larger,	and	more	error-prone	and	difficult	to	maintain.	CSS	allows	the	separation	of	presentation	from	structure.	CSS	can	define	color,	font,	text	alignment,	size,	borders,	spacing,	layout	and	many	other	typographic	characteristics,	and	can	do	so	independently	for	on-screen	and	printed	views.	CSS	also	defines	non-
visual	styles,	such	as	reading	speed	and	emphasis	for	aural	text	readers.	The	W3C	has	now	deprecated	the	use	of	all	presentational	HTML	markup.[17]For	example,	under	pre-CSS	HTML,	a	heading	element	defined	with	red	text	would	be	written	as:Chapter	1.Using	CSS,	the	same	element	can	be	coded	using	style	properties	instead	of	HTML
presentational	attributes:Chapter	1.The	advantages	of	this	may	not	be	immediately	clear	but	the	power	of	CSS	becomes	more	apparent	when	the	style	properties	are	placed	in	an	internal	style	element	or,	even	better,	an	external	CSS	file.	For	example,	suppose	the	document	contains	the	style	element:	h1	{	color:	red;	}All	h1	elements	in	the	document
will	then	automatically	become	red	without	requiring	any	explicit	code.	If	the	author	later	wanted	to	make	h1	elements	blue	instead,	this	could	be	done	by	changing	the	style	element	to:	h1	{	color:	blue;	}rather	than	by	laboriously	going	through	the	document	and	changing	the	color	for	each	individual	h1	element.The	styles	can	also	be	placed	in	an
external	CSS	file,	as	described	below,	and	loaded	using	syntax	similar	to:This	further	decouples	the	styling	from	the	HTML	document	and	makes	it	possible	to	restyle	multiple	documents	by	simply	editing	a	shared	external	CSS	file.CSS,	or	Cascading	Style	Sheets,	offers	a	flexible	way	to	style	web	content,	with	styles	originating	from	browser	defaults,
user	preferences,	or	web	designers.	These	styles	can	be	applied	inline,	within	an	HTML	document,	or	through	external	.css	files	for	broader	consistency.	Not	only	does	this	simplify	web	development	by	promoting	reusability	and	maintainability,	it	also	improves	site	performance	because	styles	can	be	offloaded	into	dedicated	.css	files	that	browsers
can	cache.	Additionally,	even	if	the	styles	cannot	be	loaded	or	are	disabled,	this	separation	maintains	the	accessibility	and	readability	of	the	content,	ensuring	that	the	site	is	usable	for	all	users,	including	those	with	disabilities.	Its	multi-faceted	approach,	including	considerations	for	selector	specificity,	rule	order,	and	media	types,	ensures	that
websites	are	visually	coherent	and	adaptive	across	different	devices	and	user	needs,	striking	a	balance	between	design	intent	and	user	accessibility.Multiple	style	sheets	can	be	imported.	Different	styles	can	be	applied	depending	on	the	output	device	being	used;	for	example,	the	screen	version	can	be	quite	different	from	the	printed	version,	so
authors	can	tailor	the	presentation	appropriately	for	each	medium.The	style	sheet	with	the	highest	priority	controls	the	content	display.	Declarations	not	set	in	the	highest	priority	source	are	passed	on	to	a	source	of	lower	priority,	such	as	the	user	agent	style.	The	process	is	called	cascading.One	of	the	goals	of	CSS	is	to	allow	users	greater	control
over	presentation.	Someone	who	finds	red	italic	headings	difficult	to	read	may	apply	a	different	style	sheet.	Depending	on	the	browser	and	the	website,	a	user	may	choose	from	various	style	sheets	provided	by	the	designers,	or	may	remove	all	added	styles,	and	view	the	site	using	the	browser's	default	styling,	or	may	override	just	the	red	italic	heading
style	without	altering	other	attributes.	Browser	extensions	like	Stylish	and	Stylus	have	been	created	to	facilitate	the	management	of	such	user	style	sheets.	In	the	case	of	large	projects,	cascading	can	be	used	to	determine	which	style	has	a	higher	priority	when	developers	do	integrate	third-party	styles	that	have	conflicting	priorities,	and	to	further
resolve	those	conflicts.	Additionally,	cascading	can	help	create	themed	designs,	which	help	designers	fine-tune	aspects	of	a	design	without	compromising	the	overall	layout.CSS	priority	scheme	(highest	to	lowest)PriorityCSS	source	typeDescription1ImportanceThe	"!important"	annotation	overwrites	the	previous	priority	types2InlineA	style	applied	to
an	HTML	element	via	HTML	"style"	attribute3Media	TypeA	property	definition	applies	to	all	media	types	unless	a	media-specific	CSS	is	defined4User	definedMost	browsers	have	the	accessibility	feature:	a	user-defined	CSS5Selector	specificityA	specific	contextual	selector	(#heading	p)	overwrites	generic	definition6Rule	orderLast	rule	declaration	has
a	higher	priority7Parent	inheritanceIf	a	property	is	not	specified,	it	is	inherited	from	a	parent	element8CSS	property	definition	in	HTML	documentCSS	rule	or	CSS	inline	style	overwrites	a	default	browser	value9Browser	defaultThe	lowest	priority:	browser	default	value	is	determined	by	W3C	initial	value	specificationsSpecificity	refers	to	the	relative
weights	of	various	rules.[18]	It	determines	which	styles	apply	to	an	element	when	more	than	one	rule	could	apply.	Based	on	the	specification,	a	simple	selector	(e.g.	H1)	has	a	specificity	of	1,	class	selectors	have	a	specificity	of	1,0,	and	ID	selectors	have	a	specificity	of	1,0,0.	Because	the	specificity	values	do	not	carry	over	as	in	the	decimal	system,
commas	are	used	to	separate	the	"digits"[19]	(a	CSS	rule	having	11	elements	and	11	classes	would	have	a	specificity	of	11,11,	not	121).Thus	the	selectors	of	the	following	rule	result	in	the	indicated	specificity:SelectorsSpecificityh1	{color:	white;}0,	0,	0,	1p	em	{color:	green;}0,	0,	0,	2.grape	{color:	red;}0,	0,	1,	0p.bright	{color:	blue;}0,	0,	1,
1p.bright	em.dark	{color:	yellow;}0,	0,	2,	2#id218	{color:	brown;}0,	1,	0,	0style="	"1,	0,	0,	0Consider	this	HTML	fragment:	#xyz	{	color:	blue;	}	To	demonstrate	specificity	In	the	above	example,	the	declaration	in	the	style	attribute	overrides	the	one	in	the	element	because	it	has	a	higher	specificity,	and	thus,	the	paragraph	appears	green:	To
demonstrate	specificityInheritance	is	a	key	feature	in	CSS;	it	relies	on	the	ancestor-descendant	relationship	to	operate.	Inheritance	is	the	mechanism	by	which	properties	are	applied	not	only	to	a	specified	element	but	also	to	its	descendants.[18]	Inheritance	relies	on	the	document	tree,	which	is	the	hierarchy	of	XHTML	elements	in	a	page	based	on
nesting.	Descendant	elements	may	inherit	CSS	property	values	from	any	ancestor	element	enclosing	them.In	general,	descendant	elements	inherit	text-related	properties,	but	their	box-related	properties	are	not	inherited.	Properties	that	can	be	inherited	are	color,	font,	letter	spacing,	line-height,	list-style,	text-align,	text-indent,	text-transform,
visibility,	white-space,	and	word-spacing.	Properties	that	cannot	be	inherited	are	background,	border,	display,	float	and	clear,	height,	and	width,	margin,	min-	and	max-height	and	-width,	outline,	overflow,	padding,	position,	text-decoration,	vertical-align,	and	z-index.Inheritance	can	be	used	to	avoid	declaring	certain	properties	over	and	over	again	in	a
style	sheet,	allowing	for	shorter	CSS.Inheritance	in	CSS	is	not	the	same	as	inheritance	in	class-based	programming	languages,	where	it	is	possible	to	define	class	B	as	"like	class	A,	but	with	modifications".[20]	With	CSS,	it	is	possible	to	style	an	element	with	"class	A,	but	with	modifications".	However,	it	is	not	possible	to	define	a	CSS	class	B	like	that,
which	could	then	be	used	to	style	multiple	elements	without	having	to	repeat	the	modifications.Given	the	following	style	sheet:p	{	color:	pink;}Suppose	there	is	a	p	element	with	an	emphasizing	element	()	inside:	This	is	to	illustrate	inheritanceIf	no	color	is	assigned	to	the	em	element,	the	emphasized	word	"illustrate"	inherits	the	color	of	the	parent
element,	p.	The	style	sheet	p	has	the	color	pink,	hence,	the	em	element	is	likewise	pink:	This	is	to	illustrate	inheritanceThe	whitespace	between	properties	and	selectors	is	ignored.	This	code	snippet:body{overflow:hidden;background:#000000;background-image:url(images/bg.gif);background-repeat:no-repeat;background-position:left	top;}is
functionally	equivalent	to	this	one:body	{	overflow:	hidden;	background-color:	#000000;	background-image:	url(images/bg.gif);	background-repeat:	no-repeat;	background-position:	left	top;}Main	article:	Indentation	styleOne	common	way	to	format	CSS	for	readability	is	to	indent	each	property	and	give	it	its	own	line.	In	addition	to	formatting	CSS	for
readability,	shorthand	properties	can	be	used	to	write	out	the	code	faster,	which	also	gets	processed	more	quickly	when	being	rendered:[21]body	{	overflow:	hidden;	background:	#000	url(images/bg.gif)	no-repeat	left	top;}Sometimes,	multiple	property	values	are	indented	onto	their	own	line:@font-face	{	font-family:	'Comic	Sans';	font-size:	20px;	src:
url('first.example.com'),	url('second.example.com'),	url('third.example.com'),	url('fourth.example.com');}CSS2.1	defines	three	positioning	schemes:Normal	flowInline	items	are	laid	out	in	the	same	way	as	the	letters	in	words	in	the	text,	one	after	the	other	across	the	available	space	until	there	is	no	more	room,	then	starting	a	new	line	below.	Block
items	stack	vertically,	like	paragraphs	and	like	the	items	in	a	bulleted	list.	Normal	flow	also	includes	the	relative	positioning	of	block	or	inline	items	and	run-in	boxes.FloatsA	floated	item	is	taken	out	of	the	normal	flow	and	shifted	to	the	left	or	right	as	far	as	possible	in	the	space	available.	Other	content	then	flows	alongside	the	floated	item.Absolute
positioningAn	absolutely	positioned	item	has	no	place	in,	and	no	effect	on,	the	normal	flow	of	other	items.	It	occupies	its	assigned	position	in	its	container	independently	of	other	items.[22]There	are	five	possible	values	of	the	position	property.	If	an	item	is	positioned	in	any	way	other	than	static,	then	the	further	properties	top,	bottom,	left,	and	right
are	used	to	specify	offsets	and	positions.The	element	having	position	static	is	not	affected	by	the	top,	bottom	,	left	or	right	properties.The	default	value	places	the	item	in	the	normal	flow.The	item	is	placed	in	the	normal	flow,	and	then	shifted	or	offset	from	that	position.	Subsequent	flow	items	are	laid	out	as	if	the	item	had	not	been	moved.Specifies
absolute	positioning.	The	element	is	positioned	in	relation	to	its	nearest	non-static	ancestor.The	item	is	absolutely	positioned	in	a	fixed	position	on	the	screen	even	as	the	rest	of	the	document	is	scrolled[22]The	float	property	may	have	one	of	three	values.	Absolutely	positioned	or	fixed	items	cannot	be	floated.	Other	elements	normally	flow	around
floated	items,	unless	they	are	prevented	from	doing	so	by	their	clear	property.leftThe	item	floats	to	the	left	of	the	line	that	it	would	have	appeared	in;	other	items	may	flow	around	its	right	side.rightThe	item	floats	to	the	right	of	the	line	that	it	would	have	appeared	in;	other	items	may	flow	around	its	left	side.clearForces	the	element	to	appear
underneath	('clear')	floated	elements	to	the	left	(clear:left),	right	(clear:right)	or	both	sides	(clear:both).[22][23]Hkon	Wium	Lie,	chief	technical	officer	of	the	Opera	Software	company	and	co-creator	of	the	CSS	web	standardsCSS	was	first	proposed	by	Hkon	Wium	Lie	on	10	October	1994.[24]	At	the	time,	Lie	was	working	with	Tim	Berners-Lee	at
CERN.[25]	Several	other	style	sheet	languages	for	the	web	were	proposed	around	the	same	time,	and	discussions	on	public	mailing	lists	and	inside	World	Wide	Web	Consortium	resulted	in	the	first	W3C	CSS	Recommendation	(CSS1)[26]	being	released	in	1996.	In	particular,	a	proposal	by	Bert	Bos	was	influential;	he	became	co-author	of	CSS1,	and	is
regarded	as	co-creator	of	CSS.[27]Style	sheets	have	existed	in	one	form	or	another	since	the	beginnings	of	Standard	Generalized	Markup	Language	(SGML)	in	the	1980s,	and	CSS	was	developed	to	provide	style	sheets	for	the	web.[28]	One	requirement	for	a	web	style	sheet	language	was	for	style	sheets	to	come	from	different	sources	on	the	web.
Therefore,	existing	style	sheet	languages	like	DSSSL	and	FOSI	were	not	suitable.	CSS,	on	the	other	hand,	let	a	document's	style	be	influenced	by	multiple	style	sheets	by	way	of	"cascading"	styles.[28]As	HTML	grew,	it	came	to	encompass	a	wider	variety	of	stylistic	capabilities	to	meet	the	demands	of	web	developers.	This	evolution	gave	the	designer
more	control	over	site	appearance,	at	the	cost	of	more	complex	HTML.	Variations	in	web	browser	implementations,	such	as	ViolaWWW	and	WorldWideWeb,[29]	made	consistent	site	appearance	difficult,	and	users	had	less	control	over	how	web	content	was	displayed.	The	browser/editor	developed	by	Tim	Berners-Lee	had	style	sheets	that	were	hard-
coded	into	the	program.	The	style	sheets	could	therefore	not	be	linked	to	documents	on	the	web.[25]	Robert	Cailliau,	also	of	CERN,	wanted	to	separate	the	structure	from	the	presentation	so	that	different	style	sheets	could	describe	different	presentation	for	printing,	screen-based	presentations,	and	editors.[29]Improving	web	presentation	capabilities
was	a	topic	of	interest	to	many	in	the	web	community	and	nine	different	style	sheet	languages	were	proposed	on	the	www-style	mailing	list.[28]	Of	these	nine	proposals,	two	were	especially	influential	on	what	became	CSS:	Cascading	HTML	Style	Sheets[24]	and	Stream-based	Style	Sheet	Proposal	(SSP).[27][30]	Two	browsers	served	as	testbeds	for
the	initial	proposals;	Lie	worked	with	Yves	Lafon	to	implement	CSS	in	Dave	Raggett's	Arena	browser.[31][32][33]	Bert	Bos	implemented	his	own	SSP	proposal	in	the	Argo	browser.[27]	Thereafter,	Lie	and	Bos	worked	together	to	develop	the	CSS	standard	(the	'H'	was	removed	from	the	name	because	these	style	sheets	could	also	be	applied	to	other
markup	languages	besides	HTML).[25]Lie's	proposal	was	presented	at	the	"Mosaic	and	the	Web"	conference	(later	called	WWW2)	in	Chicago,	Illinois	in	1994,	and	again	with	Bert	Bos	in	1995.[25]	Around	this	time	the	W3C	was	already	being	established	and	took	an	interest	in	the	development	of	CSS.	It	organized	a	workshop	toward	that	end	chaired
by	Steven	Pemberton.	This	resulted	in	W3C	adding	work	on	CSS	to	the	deliverables	of	the	HTML	editorial	review	board	(ERB).	Lie	and	Bos	were	the	primary	technical	staff	on	this	aspect	of	the	project,	with	additional	members,	including	Thomas	Reardon	of	Microsoft,	participating	as	well.	In	August	1996,	Netscape	Communication	Corporation
presented	an	alternative	style	sheet	language	called	JavaScript	Style	Sheets	(JSSS).[25]	The	spec	was	never	finished,	and	is	deprecated.[34]	By	the	end	of	1996,	CSS	was	ready	to	become	official,	and	the	CSS	level	1	Recommendation	was	published	in	December.Development	of	HTML,	CSS,	and	the	DOM	had	all	been	taking	place	in	one	group,	the
HTML	Editorial	Review	Board	(ERB).	Early	in	1997,	the	ERB	was	split	into	three	working	groups:	HTML	Working	Group,	chaired	by	Dan	Connolly	of	W3C;	DOM	Working	group,	chaired	by	Lauren	Wood	of	SoftQuad;	and	CSS	Working	Group,	chaired	by	Chris	Lilley	of	W3C.The	CSS	Working	Group	began	tackling	issues	that	had	not	been	addressed
with	CSS	level	1,	resulting	in	the	creation	of	CSS	level	2	on	November	4,	1997.	It	was	published	as	a	W3C	Recommendation	on	May	12,	1998.	CSS	level	3,	which	was	started	in	1998,	is	still	under	development	as	of	2014[update].In	2005,	the	CSS	Working	Groups	decided	to	enforce	the	requirements	for	standards	more	strictly.	This	meant	that	already
published	standards	like	CSS2.1,	CSS3	Selectors,	and	CSS3	Text	were	pulled	back	from	Candidate	Recommendation	to	Working	Draft	level.The	CSS1	specification	was	completed	in	1996.	Microsoft's	Internet	Explorer	3[25]	was	released	that	year,	featuring	some	limited	support	for	CSS.	IE	4	and	Netscape	4.x	added	more	support,	but	it	was	typically
incomplete	and	had	many	bugs	that	prevented	CSS	from	being	usefully	adopted.	It	was	more	than	three	years	before	any	web	browser	achieved	near-full	implementation	of	the	specification.	Internet	Explorer	5.0	for	the	Macintosh,	shipped	in	March	2000,	was	the	first	browser	to	have	full	(better	than	99	percent)	CSS1	support,[35]	surpassing	Opera,
which	had	been	the	leader	since	its	introduction	of	CSS	support	fifteen	months	earlier.	Other	browsers	followed	soon	afterward,	and	many	of	them	additionally	implemented	parts	of	CSS2.However,	even	when	later	"version	5"	web	browsers	began	to	offer	a	fairly	full	implementation	of	CSS,	they	were	still	incorrect	in	certain	areas.	They	were	fraught
with	inconsistencies,	bugs,	and	other	quirks.	Microsoft	Internet	Explorer	5.	x	for	Windows,	as	opposed	to	the	very	different	IE	for	Macintosh,	had	a	flawed	implementation	of	the	CSS	box	model,	as	compared	with	the	CSS	standards.	Such	inconsistencies	and	variation	in	feature	support	made	it	difficult	for	designers	to	achieve	a	consistent	appearance
across	browsers	and	platforms	without	the	use	of	workarounds	termed	CSS	hacks	and	filters.	The	IE	Windows	box	model	bugs	were	so	serious	that,	when	Internet	Explorer	6	was	released,	Microsoft	introduced	a	backward-compatible	mode	of	CSS	interpretation	("quirks	mode")	alongside	an	alternative,	corrected	"standards	mode".	Other	non-
Microsoft	browsers	also	provided	mode-switch	capabilities.	It,	therefore,	became	necessary	for	authors	of	HTML	files	to	ensure	they	contained	special	distinctive	"standards-compliant	CSS	intended"	marker	to	show	that	the	authors	intended	CSS	to	be	interpreted	correctly,	in	compliance	with	standards,	as	opposed	to	being	intended	for	the	now	long-
obsolete	IE5/Windows	browser.	Without	this	marker,	web	browsers	with	the	"quirks	mode"-switching	capability	will	size	objects	in	web	pages	as	IE	5	on	Windows	would,	rather	than	following	CSS	standards.Problems	with	the	patchy	adoption	of	CSS	and	errata	in	the	original	specification	led	the	W3C	to	revise	the	CSS2	standards	into	CSS2.1,	which
moved	nearer	to	a	working	snapshot	of	current	CSS	support	in	HTML	browsers.	Some	CSS2	properties	that	no	browser	successfully	implemented	were	dropped,	and	in	a	few	cases,	defined	behaviors	were	changed	to	bring	the	standard	into	line	with	the	predominant	existing	implementations.	CSS2.1	became	a	Candidate	Recommendation	on
February	25,	2004,	but	CSS2.1	was	pulled	back	to	Working	Draft	status	on	June	13,	2005,[36]	and	only	returned	to	Candidate	Recommendation	status	on	July	19,	2007.[37]In	addition	to	these	problems,	the	.css	extension	was	used	by	a	software	product	used	to	convert	PowerPoint	files	into	Compact	Slide	Show	files,[38]so	some	web	servers	served	all
.css[39]	as	MIME	type	application/x-pointplus[40]	rather	than	text/css.Individual	browser	vendors	occasionally	introduced	new	parameters	ahead	of	standardization	and	universalization.	To	prevent	interfering	with	future	implementations,	vendors	prepended	unique	names	to	the	parameters,	such	as	-moz-	for	Mozilla	Firefox,	-webkit-	named	after	the
browsing	engine	of	Apple	Safari,	-o-	for	Opera	Browser	and	-ms-	for	Microsoft	Internet	Explorer	and	early	versions	of	Microsoft	Edge	that	use	EdgeHTML.Occasionally,	the	parameters	with	vendor	prefixes	such	as	-moz-radial-gradient	and	-webkit-linear-gradient	have	slightly	different	syntax	as	compared	to	their	non-vendor-prefix	counterparts.
[41]Prefixed	properties	are	rendered	obsolete	by	the	time	of	standardization.	Programs	are	available	to	automatically	add	prefixes	for	older	browsers	and	to	point	out	standardized	versions	of	prefixed	parameters.	Since	prefixes	are	limited	to	a	small	subset	of	browsers,	removing	the	prefix	allows	other	browsers	to	see	the	functionality.	An	exception	is
certain	obsolete	-webkit-	prefixed	properties,	which	are	so	common	and	persistent	on	the	web	that	other	families	of	browsers	have	decided	to	support	them	for	compatibility.[42]CSS	Snapshot	2021CSS	has	various	levels	and	profiles.	Each	level	of	CSS	builds	upon	the	last,	typically	adding	new	features	and	typically	denoted[43]	as	CSS1,	CSS2,	CSS3,
and	CSS4.	Profiles	are	typically	a	subset	of	one	or	more	levels	of	CSS	built	for	a	particular	device	or	user	interface.	Currently,	there	are	profiles	for	mobile	devices,	printers,	and	television	sets.	Profiles	should	not	be	confused	with	media	types,	which	were	added	in	CSS2.The	first	CSS	specification	to	become	an	official	W3C	Recommendation	is	CSS
level	1,	published	on	17	December	1996.	Hkon	Wium	Lie	and	Bert	Bos	are	credited	as	the	original	developers.[44][45]	Among	its	capabilities	are	support	forFont	properties	such	as	typeface	and	emphasisColor	of	text,	backgrounds,	and	other	elementsText	attributes	such	as	spacing	between	words,	letters,	and	lines	of	textAlignment	of	text,	images,
tables	and	other	elementsMargin,	border,	padding,	and	positioning	for	most	elementsUnique	identification	and	generic	classification	of	groups	of	attributesThe	W3C	no	longer	maintains	the	CSS	1	Recommendation.[46]CSS	level	2	specification	was	developed	by	the	W3C	and	published	as	a	recommendation	in	May	1998.	A	superset	of	CSS1,	CSS2
includes	a	number	of	new	capabilities	like	absolute,	relative,	and	fixed	positioning	of	elements	and	z-index,	the	concept	of	media	types,	support	for	aural	style	sheets	(which	were	later	replaced	by	the	CSS	3	speech	modules)[47]	and	bidirectional	text,	and	new	font	properties	such	as	shadows.The	W3C	no	longer	maintains	the	CSS2	recommendation.
[48]CSS	level	2	revision	1,	often	referred	to	as	"CSS	2.1",	fixes	errors	in	CSS2,	removes	poorly	supported	or	not	fully	interoperable	features	and	adds	already	implemented	browser	extensions	to	the	specification.	To	comply	with	the	W3C	Process	for	standardizing	technical	specifications,	CSS2.1	went	back	and	forth	between	Working	Draft	status	and
Candidate	Recommendation	status	for	many	years.	CSS	2.1	first	became	a	Candidate	Recommendation	on	25	February	2004,	but	it	was	reverted	to	a	Working	Draft	on	13	June	2005	for	further	review.	It	returned	to	Candidate	Recommendation	on	19	July	2007	and	then	updated	twice	in	2009.	However,	because	changes	and	clarifications	were	made,	it
again	went	back	to	Last	Call	Working	Draft	on	7	December	2010.CSS	2.1	went	to	Proposed	Recommendation	on	12	April	2011.[49]	After	being	reviewed	by	the	W3C	Advisory	Committee,	it	was	finally	published	as	a	W3C	Recommendation	on	7	June	2011.[50]CSS	2.1	was	planned	as	the	first	and	final	revision	of	level	2but	low-priority	work	on	CSS	2.2
began	in	2015."CSS3"	redirects	here.	For	other	uses,	see	CSS3	(disambiguation).Unlike	CSS2,	which	is	a	large	single	specification	defining	various	features,	CSS3	is	divided	into	several	separate	documents	called	"modules".	Each	module	adds	new	capabilities	or	extends	features	defined	in	CSS2,	preserving	backward	compatibility.	Work	on	CSS	level
3	started	around	the	time	of	publication	of	the	original	CSS2	recommendation.	The	earliest	CSS3	drafts	were	published	in	June	1999.[51]Due	to	the	modularization,	different	modules	have	different	stability	and	statuses.[52]Some	modules	have	Candidate	Recommendation	(CR)	status	and	are	considered	moderately	stable.	At	CR	stage,
implementations	are	advised	to	drop	vendor	prefixes.[53]Summary	of	main	module-specifications[54]ModuleSpecification	titleStatusDatecss3-backgroundCSS	Backgrounds	and	Borders	Module	Level	3Candidate	Rec.Feb	2023css-box-3CSS	Box	Model	Module	Level	3RecommendationApr	2023css-cascade-3CSS	Cascading	and	Inheritance	Level
3RecommendationFeb	2021css-color-3CSS	Color	Module	Level	3RecommendationJan	2022css3-contentCSS	Generated	Content	Module	Level	3Working	DraftAug	2019css-fonts-3CSS	Fonts	Module	Level	3RecommendationSep	2018css3-gcpmCSS	Generated	Content	for	Paged	Media	ModuleWorking	DraftMay	2014css3-layoutCSS	Template	Layout
ModuleNoteMar	2015css3-mediaqueriesMedia	QueriesRecommendationJun	2012mediaqueries-4Media	Queries	Level	4Candidate	Rec.Dec	2021css3-multicolMulti-column	Layout	Module	Level	1Candidate	Rec.Oct	2021css3-pageCSS	Paged	Media	Module	Level	3Working	Draft,	and	part	migrated	to	css3-breakOct	2018css3-breakCSS	Fragmentation
Module	Level	3Candidate	Rec.Dec	2018selectors-3Selectors	Level	3RecommendationNov	2018selectors-4Selectors	Level	4Working	DraftNov	2022css3-uiCSS	Basic	User	Interface	Module	Level	3	(CSS3	UI)RecommendationJun	2018"CSS4"	redirects	here.	For	other	uses,	see	CSS4	(disambiguation).Jen	Simmons	discussing	the	state	of	CSS	in	2019,	as
several	CSS4	modules	were	being	advancedThere	is	no	single,	integrated	CSS4	specification,[55]	because	the	specification	has	been	split	into	many	separate	modules	which	level	independently.Modules	that	build	on	things	from	CSS	Level	2	started	at	Level	3.	Some	of	them	have	already	reached	Level	4	or	are	already	approaching	Level	5.	Other
modules	that	define	entirely	new	functionality,	such	as	Flexbox,[56]	have	been	designated	as	Level	1	and	some	of	them	are	approaching	Level	2.The	CSS	Working	Group	sometimes	publishes	"Snapshots",	a	collection	of	whole	modules	and	parts	of	other	drafts	that	are	considered	stable	enough	to	be	implemented	by	browser	developers.	So	far,	five
such	"best	current	practices"	documents	have	been	published	as	Notes,	in	2007,[57]	2010,[58]	2015,[59]	2017,[60]	and	2018.[61]Since	these	specification	snapshots	are	primarily	intended	for	developers,	there	has	been	a	growing	demand	for	a	similar	versioned	reference	document	targeted	at	authors,	which	would	present	the	state	of	interoperable
implementations	as	meanwhile	documented	by	sites	like	Can	I	Use...[62]	and	the	MDN	Web	Docs.[63]	A	W3C	Community	Group	has	been	established	in	early	2020	in	order	to	discuss	and	define	such	a	resource.[64]	The	actual	kind	of	versioning	is	also	up	to	debate,	which	means	that	the	document,	once	produced,	might	not	be	called	"CSS4".Each	web
browser	uses	a	layout	engine	to	render	web	pages,	and	support	for	CSS	functionality	is	not	consistent	between	them.	Because	browsers	do	not	parse	CSS	perfectly,	multiple	coding	techniques	have	been	developed	to	target	specific	browsers	with	workarounds	(commonly	known	as	CSS	hacks	or	CSS	filters).	The	adoption	of	new	functionality	in	CSS
can	be	hindered	by	a	lack	of	support	in	major	browsers.	For	example,	Internet	Explorer	was	slow	to	add	support	for	many	CSS	3	features,	which	slowed	the	adoption	of	those	features	and	damaged	the	browser's	reputation	among	developers.	Additionally,	a	proprietary	syntax	for	the	non-vendor-prefixed	filter	property	was	used	in	some	versions.[65]
In	order	to	ensure	a	consistent	experience	for	their	users,	web	developers	often	test	their	sites	across	multiple	operating	systems,	browsers,	and	browser	versions,	increasing	development	time	and	complexity.	Tools	such	as	BrowserStack	have	been	built	to	reduce	the	complexity	of	maintaining	these	environments.In	addition	to	these	testing	tools,
many	sites	maintain	lists	of	browser	support	for	specific	CSS	properties,	including	CanIUse	and	the	MDN	Web	Docs.	Additionally,	CSS	3	defines	feature	queries,	which	provide	an	@supports	directive	that	will	allow	developers	to	target	browsers	with	support	for	certain	functionality	directly	within	their	CSS.[66]	CSS	that	is	not	supported	by	older
browsers	can	also	sometimes	be	patched	in	using	JavaScript	polyfills,	which	are	pieces	of	JavaScript	code	designed	to	make	browsers	behave	consistently.	These	workaroundsand	the	need	to	support	fallback	functionalitycan	add	complexity	to	development	projects,	and	consequently,	companies	frequently	define	a	list	of	browser	versions	that	they	will
and	will	not	support.As	websites	adopt	newer	code	standards	that	are	incompatible	with	older	browsers,	these	browsers	can	be	cut	off	from	accessing	many	of	the	resources	on	the	web	(sometimes	intentionally).[67]	Many	of	the	most	popular	sites	on	the	internet	are	not	just	visually	degraded	on	older	browsers	due	to	poor	CSS	support	but	do	not
work	at	all,	in	large	part	due	to	the	evolution	of	JavaScript	and	other	web	technologies.Some	noted	limitations	of	the	current	capabilities	of	CSS	include:Scoping	rules	for	properties	such	as	z-index	look	for	the	closest	parent	element	with	a	position:	absolute	or	position:	relative	attribute.	This	odd	coupling	has	undesired	effects.	For	example,	it	is
impossible	to	avoid	declaring	a	new	scope	when	one	is	forced	to	adjust	an	element's	position,	preventing	one	from	using	the	desired	scope	of	a	parent	element.CSS	implements	pseudo-classes	that	allow	a	degree	of	user	feedback	by	conditional	application	of	alternative	styles.	One	CSS	pseudo-class,	":hover",	is	dynamic	(equivalent	of	JavaScript
"onmouseover")	and	has	potential	for	misuse	(e.g.,	implementing	cursor-proximity	popups),[68]	but	CSS	has	no	ability	for	a	client	to	disable	it	(no	"disable"-like	property)	or	limit	its	effects	(no	"nochange"-like	values	for	each	property).There	is	no	way	to	name	a	CSS	rule,	which	would	allow	(for	example)	client-side	scripts	to	refer	to	the	rule	even	if	its
selector	changes.CSS	styles	often	must	be	duplicated	in	several	rules	to	achieve	the	desired	effect,	causing	additional	maintenance	and	requiring	more	thorough	testing.	Some	new	CSS	features	were	proposed	to	solve	this	but	were	abandoned	afterward.[69][70]	Instead,	authors	may	gain	this	ability	by	using	more	sophisticated	stylesheet	languages
which	compile	to	CSS,	such	as	Sass,	Less,	or	Stylus.Besides	the	::first-letter	pseudo-element,	one	cannot	target	specific	ranges	of	text	without	needing	to	utilize	placeholder	elements.Main	article:	Separation	of	content	and	presentationCSS	facilitates	the	publication	of	content	in	multiple	presentation	formats	by	adjusting	styles	based	on	various
nominal	parameters.	These	parameters	include	explicit	user	preferences	(such	as	themes	or	font	size),	compatibility	with	different	web	browsers,	the	type	of	device	used	to	view	the	content	(e.g.,	desktop,	tablet,	or	mobile	device),	screen	resolutions,	the	geographic	location	of	the	user,	and	many	other	variables.	CSS	also	enables	responsive	design,
ensuring	that	content	dynamically	adapts	to	different	screen	sizes	and	orientations,	enhancing	accessibility	and	user	experience	across	a	wide	range	of	environments.Main	article:	Style	sheet	(web	development)When	CSS	is	used	effectively,	in	terms	of	inheritance	and	"cascading",	a	global	style	sheet	can	be	used	to	affect	and	style	elements	site-wide.
If	the	situation	arises	that	the	styling	of	the	elements	should	be	changed	or	adjusted,	these	changes	can	be	made	by	editing	rules	in	the	global	style	sheet.	Before	CSS,	this	sort	of	maintenance	was	more	difficult,	expensive,	and	time-consuming.A	stylesheet,	internal	or	external,	specifies	the	style	once	for	a	range	of	HTML	elements	selected	by	class,
type	or	relationship	to	others.	This	is	much	more	efficient	than	repeating	style	information	inline	for	each	occurrence	of	the	element.	An	external	stylesheet	is	usually	stored	in	the	browser	cache,	and	can	therefore	be	used	on	multiple	pages	without	being	reloaded,	further	reducing	data	transfer	over	a	network.Main	article:	Progressive
enhancementWith	a	simple	change	of	one	line,	a	different	style	sheet	can	be	used	for	the	same	page.	This	has	advantages	for	accessibility,	as	well	as	providing	the	ability	to	tailor	a	page	or	site	to	different	target	devices.	Furthermore,	devices	not	able	to	understand	the	styling	still	display	the	content.Main	article:	Tableless	web	design
AccessibilityWithout	CSS,	web	designers	must	typically	lay	out	their	pages	with	techniques	such	as	HTML	tables	that	hinder	accessibility	for	vision-impaired	users	(see	Tableless	web	design	Accessibility).Main	article:	CSS	frameworkCSS	frameworks	are	prepared	libraries	that	are	meant	to	allow	for	easier,	more	standards-compliant	styling	of	web
pages	using	the	Cascading	Style	Sheets	language.	CSS	frameworks	include	Blueprint,	Bootstrap,	Foundation	and	Materialize.	Like	programming	and	scripting	language	libraries,	CSS	frameworks	are	usually	incorporated	as	external	.css	sheets	referenced	in	the	HTML	.	They	provide	a	number	of	ready-made	options	for	designing	and	laying	out	the
web	page.	Although	many	of	these	frameworks	have	been	published,	some	authors	use	them	mostly	for	rapid	prototyping,	or	for	learning	from,	and	prefer	to	'handcraft'	CSS	that	is	appropriate	to	each	published	site	without	the	design,	maintenance	and	download	overhead	of	having	many	unused	features	in	the	site's	styling.[71]As	the	size	of	CSS
resources	used	in	a	project	increases,	a	development	team	often	needs	to	decide	on	a	common	design	methodology	to	keep	them	organized.	The	goals	are	ease	of	development,	ease	of	collaboration	during	development,	and	performance	of	the	deployed	stylesheets	in	the	browser.	Popular	methodologies	include	OOCSS	(object-oriented	CSS),	ACSS
(atomic	CSS),	CSS	(organic	Cascade	Style	Sheet),	SMACSS	(scalable	and	modular	architecture	for	CSS),	and	BEM	(block,	element,	modifier).[72]Flash	of	unstyled	contentCSS-in-JS^	"Minutes	Telecon	2024-12-11".	CSS	WG	Blog.	W3C.	2024-12-12.	Archived	from	the	original	on	2025-01-16.	Retrieved	2025-01-16.^	"CSS	developer	guide".	MDN	Web
Docs.	Archived	from	the	original	on	2015-09-25.	Retrieved	2015-09-24.^	Flanagan,	David	(18	April	2011).	JavaScript:	the	definitive	guide.	Beijing;	Farnham:	O'Reilly.	p.1.	ISBN978-1-4493-9385-4.	OCLC686709345.	JavaScript	is	part	of	the	triad	of	technologies	that	all	Web	developers	must	learn:	HTML	to	specify	the	content	of	web	pages,	CSS	to
specify	the	presentation	of	web	pages,	and	JavaScript	to	specify	the	behavior	of	web	pages.^	"What	is	CSS?".	World	Wide	Web	Consortium.	Archived	from	the	original	on	2010-11-29.	Retrieved	2010-12-01.^	Clark,	Scott	(23	July	2010).	"Web-based	Mobile	Apps	of	the	Future	Using	HTML	5,	CSS	and	JavaScript".	HTML	Goodies.	HTMLGoodies.
Archived	from	the	original	on	2014-10-20.	Retrieved	2014-10-16.^	"W3C	CSS	validation	service".	Archived	from	the	original	on	2011-02-14.	Retrieved	2012-06-30.^	"W3C	CSS2.1	specification	for	pseudo-elements	and	pseudo-classes".	World	Wide	Web	Consortium.	7	June	2011.	Archived	from	the	original	on	30	April	2012.	Retrieved	30	April	2012.^
"Selectors".	Cascading	Style	Sheets	Level	2	Revision	1	(CSS	2.1)	Specification.	W3C.	Archived	from	the	original	on	2006-04-23.^	"Selectors	Level	3".	W3C.	Archived	from	the	original	on	2014-06-03.	Retrieved	2014-05-30.^	"CSS	Syntax	Module	Level	3".	W3C.	Archived	from	the	original	on	1	October	2023.	Retrieved	1	October	2023.^	"W3C	CSS2.1
specification	for	rule	sets,	declaration	blocks,	and	selectors".	World	Wide	Web	Consortium.	7	June	2011.	Archived	from	the	original	on	28	March	2008.	Retrieved	2009-06-20.^	"Full	property	table".	W3C.	Archived	from	the	original	on	2014-05-30.	Retrieved	2014-05-30.^	"Index	of	CSS	properties".	W3C.	Retrieved	2020-08-09.^	"CSS	Color".	MDN	Web
Docs.	2024-04-05.	Archived	from	the	original	on	2024-03-27.	Retrieved	2024-04-05.^	"6.1	Length	units".	Cascading	Style	Sheets,	level	1.	17	December	1996.	Archived	from	the	original	on	14	June	2019.	Retrieved	20	June	2019.^	"5.	Distance	Units:	the	type".	CSS	Values	and	Units	Module	Level	3.	6	June	2019.	Archived	from	the	original	on	7	June
2019.	Retrieved	20	June	2019.^	W3C	HTML	Working	Group.	"HTML	5.	A	vocabulary	and	associated	APIs	for	HTML	and	XHTML".	World	Wide	Web	Consortium.	Archived	from	the	original	on	15	July	2014.	Retrieved	28	June	2014.^	a	b	Meyer,	Eric	A.	(2006).	Cascading	Style	Sheets:	The	Definitive	Guide	(3rded.).	O'Reilly	Media,	Inc.	ISBN0-596-52733-
0.	Archived	from	the	original	on	2014-02-15.	Retrieved	2014-02-16.^	"Assigning	property	values,	Cascading,	and	Inheritance".	Archived	from	the	original	on	2014-06-11.	Retrieved	2014-06-10.^	"Can	a	CSS	class	inherit	one	or	more	other	classes?".	StackOverflow.	Archived	from	the	original	on	2017-10-14.	Retrieved	2017-09-10.^	"Shorthand
properties".	Tutorial.	Mozilla	Developers.	2017-12-07.	Archived	from	the	original	on	2018-01-30.	Retrieved	2018-01-30.^	a	b	c	Bos,	Bert;	etal.	(7	December	2010).	"9.3	Positioning	schemes".	Cascading	Style	Sheets	Level	2	Revision	1	(CSS	2.1)	Specification.	W3C.	Archived	from	the	original	on	18	February	2011.	Retrieved	16	February	2011.^
Holzschlag,	Molly	E	(2005).	Spring	into	HTML	and	CSS.	Pearson	Education,	Inc.	ISBN0-13-185586-7.^	a	b	Lie,	Hakon	W	(10	October	1994).	"Cascading	HTML	style	sheets	a	proposal"	(Proposal).	CERN.	Archived	from	the	original	on	4	June	2014.	Retrieved	25	May	2014.^	a	b	c	d	e	f	Lie,	Hkon	Wium;	Bos,	Bert	(1999).	Cascading	Style	Sheets,	designing
for	the	Web.	Addison	Wesley.	ISBN0-201-59625-3.	Retrieved	23	June	2010.^	"Cascading	Style	Sheets,	level	1".	World	Wide	Web	Consortium.	Archived	from	the	original	on	2014-04-09.	Retrieved	2014-03-07.^	a	b	c	Bos,	Bert	(14	April	1995).	"Simple	style	sheets	for	SGML	&	HTML	on	the	web".	World	Wide	Web	Consortium.	Archived	from	the	original
on	23	September	2009.	Retrieved	20	June	2010.^	a	b	c	"Cascading	Style	Sheets".	University	of	Oslo.	Archived	from	the	original	on	2006-09-06.	Retrieved	3	September	2014.^	a	b	Petrie,	Charles;	Cailliau,	Robert	(November	1997).	"Interview	Robert	Cailliau	on	the	WWW	Proposal:	"How	It	Really	Happened."".	Institute	of	Electrical	and	Electronics
Engineers.	Archived	from	the	original	on	6	January	2011.	Retrieved	18	August	2010.^	Bos,	Bert	(31	March	1995).	"Stream-based	Style	sheet	Proposal".	Archived	from	the	original	on	12	October	2014.	Retrieved	3	September	2014.^	Nielsen,	Henrik	Frystyk	(7	June	2002).	"Libwww	Hackers".	World	Wide	Web	Consortium.	Archived	from	the	original	on
2	December	2009.	Retrieved	6	June	2010.^	"Yves	Lafon".	World	Wide	Web	Consortium.	Archived	from	the	original	on	24	June	2010.	Retrieved	17	June	2010.^	"The	W3C	Team:	Technology	and	Society".	World	Wide	Web	Consortium.	18	July	2008.	Archived	from	the	original	on	28	May	2010.	Retrieved	22	January	2011.^	Lou	Montulli;	Brendan	Eich;
Scott	Furman;	Donna	Converse;	Troy	Chevalier	(22	August	1996).	"JavaScript-Based	Style	Sheets".	W3C.	Archived	from	the	original	on	27	May	2010.	Retrieved	23	June	2010.^	"CSS	software".	W3C.	Archived	from	the	original	on	2010-11-25.	Retrieved	2011-01-15.^	Anne	van	Kesteren.	"CSS	2.1	Anne's	Weblog".	Archived	from	the	original	on	2005-12-
10.	Retrieved	2011-02-16.^	"Archive	of	W3C	News	in	2007".	World	Wide	Web	Consortium.	21	December	2007.	Archived	from	the	original	on	2011-06-28.	Retrieved	2011-02-16.^	Nitot,	Tristan	(18	March	2002).	"Incorrect	MIME	Type	for	CSS	Files".	Mozilla	Developer	Center.	Mozilla.	Archived	from	the	original	on	2011-05-20.	Retrieved	20	June
2010.^	McBride,	Don	(27	November	2009).	"File	Types".	Archived	from	the	original	on	29	October	2010.	Retrieved	20	June	2010.^	"css	file	extension	details".	File	extension	database.	12	March	2010.	Archived	from	the	original	on	18	July	2011.	Retrieved	20	June	2010.^	Kyrnin,	Jennifer	(2019-11-12).	"What	Are	CSS	Vendor	or	Browser	Prefixes?".
Lifewire.	Archived	from	the	original	on	Nov	30,	2020.^	"Compatibility	Standard".	WHATWG.	24	January	2024.	Archived	from	the	original	on	Feb	4,	2024.^	"CSS	Snapshot	2023	2.4.	CSS	Levels".	W3C.	7	December	2023.	Archived	from	the	original	on	Feb	8,	2024.^	Bos,	Bert;	Wium	Lie,	Hkon	(1997).	Cascading	style	sheets:	designing	for	the	Web	(1st
print.ed.).	Harlow,	England;	Reading,	MA.:	Addison	Wesley	Longman.	ISBN0-201-41998-X.^	W3C:	Cascading	Style	Sheets,	level	1	Archived	2011-02-09	at	the	Wayback	Machine	CSS	1	specification^	W3C:	Cascading	Style	Sheets	level	1	specification	Archived	2011-02-11	at	the	Wayback	Machine	CSS	level	1	specification^	"Aural	style	sheets".	W3C.
Archived	from	the	original	on	2014-10-26.	Retrieved	2014-10-26.^	W3C:	Cascading	Style	Sheets,	level	2	Archived	2011-01-16	at	the	Wayback	Machine	CSS2	specification	(1998	recommendation)^	W3C:Cascading	Style	Sheets,	level	2	revision	1	Archived	2011-11-09	at	the	Wayback	Machine	CSS	2.1	specification	(W3C	Proposed	Recommendation)^
W3C:	Cascading	Style	Sheets	Standard	Boasts	Unprecedented	Interoperability	Archived	2011-06-10	at	the	Wayback	Machine^	Bos,	Bert	(18	February	2011).	"Descriptions	of	all	CSS	specifications".	World	Wide	Web	Consortium.	Archived	from	the	original	on	31	March	2011.	Retrieved	3	March	2011.^	Bos,	Bert	(26	February	2011).	"CSS	current
work".	World	Wide	Web	Consortium.	Archived	from	the	original	on	3	March	2011.	Retrieved	3	March	2011.^	Etemad,	Elika	J.	(12	December	2010).	"Cascading	Style	Sheets	(CSS)	Snapshot	2010".	World	Wide	Web	Consortium.	Archived	from	the	original	on	16	March	2011.	Retrieved	3	March	2011.^	"All	CSS	specifications".	W3C.	2014-05-22.
Archived	from	the	original	on	2014-05-30.	Retrieved	2014-05-30.^	Atkins,	Tab	Jr.	"A	Word	About	CSS4".	Archived	from	the	original	on	31	October	2012.	Retrieved	18	October	2012.^	"CSS	Flexible	Box	Layout	Module	Level	1".	W3C.	19	November	2018.	Archived	from	the	original	on	19	October	2012.	Retrieved	18	October	2012.^	"Cascading	Style
Sheets	(CSS)	Snapshot	2007".	12	May	2011.	Archived	from	the	original	on	8	August	2016.	Retrieved	18	July	2016.^	"Cascading	Style	Sheets	(CSS)	Snapshot	2010".	12	May	2011.	Archived	from	the	original	on	16	March	2011.	Retrieved	3	March	2011.^	"CSS	Snapshot	2015".	W3C.	13	October	2015.	Archived	from	the	original	on	27	January	2017.
Retrieved	13	February	2017.^	"CSS	Snapshot	2017".	W3C.	31	January	2017.	Archived	from	the	original	on	13	February	2017.	Retrieved	13	February	2017.^	"CSS	Snapshot	2018".	W3C.	22	January	2019.	Archived	from	the	original	on	1	February	2019.	Retrieved	2	January	2019.^	"CSS".	Can	I	Use	Support	tables	for	HTML5,	CSS3,	etc.	Archived	from
the	original	on	2018-02-19.	Retrieved	2019-01-26.^	"CSS".	MDN	Web	Docs.	21	July	2023.	Archived	from	the	original	on	Nov	26,	2023.^	"Call	for	Participation	in	CSS4	Community	Group".	W3C.	24	February	2020.	Archived	from	the	original	on	Feb	10,	2023.	Retrieved	2020-02-27.^	Lazaris,	Louis	(2010-04-28).	"CSS3	Solutions	for	Internet	Explorer".
Smashing	Magazine.	Archived	from	the	original	on	2016-10-12.	Retrieved	2016-10-12.^	Simmons,	Jen	(August	17,	2016).	"Using	Feature	Queries	in	CSS".	Mozilla	Hacks.	Archived	from	the	original	on	2016-10-11.	Retrieved	2016-10-12.^	Hutchinson,	Lee	(2019).	"Looking	at	the	Web	with	Internet	Explorer	6,	one	last	time".	Ars	Technica.	Archived	from
the	original	on	2016-10-12.	Retrieved	2016-10-12.^	"Pure	CSS	Popups".	meyerweb.com.	Archived	from	the	original	on	2009-12-09.	Retrieved	2009-11-19.^	Tab	Atkins	Jr.	"CSS	apply	rule".	GitHub.	Archived	from	the	original	on	2016-02-22.	Retrieved	2016-02-27.^	"Why	I	Abandoned	@apply	Tab	Completion".^	Cederholm,	Dan;	Ethan	Marcotte	(2009).
Handcrafted	CSS:	More	Bulletproof	Web	Design.	New	Riders.	p.114.	ISBN978-0-321-64338-4.	Archived	from	the	original	on	20	December	2012.	Retrieved	19	June	2010.^	Antti,	Hilj.	"OOCSS,	ACSS,	BEM,	SMACSS:	what	are	they?	What	should	I	use?".	clubmate.fi.	Hilj.	Archived	from	the	original	on	2	June	2015.	Retrieved	2	June	2015.Meyer,	Eric	A.;
Weyl,	Estelle	(2023).	Cascading	Style	Sheets:	The	Definitive	Guide,	Fifth	Edition.	O'Reilly	Media,	Inc.	ISBN978-1-09-811761-0.Grant,	Keith	J.	(2018).	CSS	in	Depth.	Manning	Publications	Co.	ISBN978-1-61729-345-0.MDN	CSS	referenceMDN	Getting	Started	with	CSSCSS	at	Wikipedia's	sister	projectsDefinitions	from	WiktionaryMedia	from
CommonsTextbooks	from	WikibooksResources	from	WikiversityData	from	WikidataDiscussions	from	Meta-WikiDocumentation	from	MediaWikiOfficial	website	Portal:	Computer	programmingRetrieved	from	"	This	post,	which	originally	appeared	on	the	blog	February	16,	2017,	has	been	updated	in	October	of	2023	and	is	the	first	reconfigured	old	post.
In	web	design	circles,	you	hear	the	term	accessibility	thrown	around	quite	a	bit.	I	think	this	is	a	great	thing.	When	we	inspect	our	sites	to	see	if	they	meet	accessibility	criteria,	however,	we	tend	to	ignore	text	alignment.	Important	note:	This	information	does	not	apply	only	to	websites.	Those	who	create	emails,	newsletters,	flyers,	or	anything	with
paragraphs	of	information	should	also	take	heed.	I	realize	that	most	people	dont	give	text	alignment	a	second	thought,	especially	on	the	web,	but	it	makes	a	difference.	As	a	former	educator,	I	know	that	the	way	text	appearscan	affect	the	readability	of	the	text	for	those	with	dyslexia	and	other	learning	disabilities.	When	I	had	a	job	training	teachers	in
technology,	I	had	training	in	creating	audience-friendly	presentation	slides.	In	that	class,	I	learned	that	text	alignment	makes	a	difference.	When	paragraphs	and	other	long	bits	of	information	appearcompletely	centered,	the	brain	finds	it	more	difficult	to	process.	Many	think	that	centering	all	their	text	is	more	artsy	or	edgy,	but	it	actually	makes	the
brain	work	harder	to	process	what	its	reading.	We	learnto	read	left	to	right	and	encounter	text	laid	out	that	way	from	an	early	age.	When	each	line	of	text	starts	in	a	consistent	spot,	our	brains	dont	have	to	work	as	hard	to	process	the	information.	When	writers	completely	center	entire	paragraphs,	however,	our	eyes	have	to	search	for	the	beginning	of
each	line,	causing	the	brain	to	process	the	information	in	a	more	disjointed	way.	Our	brains	finds	thisunnatural	and	defiant	of	howwe	are	taught	as	children.	To	see	what	I	mean,	check	out	this	article	onWhy	You	Should	Never	Center	Align	Paragraph	Text.	Theres	an	example	of	centered	text	versus	left	aligned	text	and	which	is	easier	to	read.	When
considering	the	text	alignment	for	your	web	page	content	(or	for	email	newsletters,	flyers,	and	anything	else	with	paragraphs	of	information)	reserve	centered	text	for	certain	situations:	Headers	Centering	a	topic	header	or	headline	will	set	it	apart	from	the	rest	of	the	content.	Other	options	for	headers	include	different	font	sizes	and	weights.
Emphasis	To	emphasize	a	point,	date,	deadline,	etc.,	go	ahead	and	center	it.	As	with	headers,	it	setsthe	information	apart	and	draws	the	readers	eye.	If	everything	shows	centered,	nothing	stands	apartand	it	all	runs	together.	Quotes	If	you	have	a	short	(about	one	sentence)	quote	that	doesnt	take	up	too	many	lines,	centering	it	would	work,	especially	if
you	dont	overuse	it.	Having	five	centered	quotes	on	a	page,	for	example,	may	go	a	little	to	far.	Construct	longer	quotes	in	paragraph	form	and	left	justified,	but	indent	themto	set	themapart.	You	could	indentthe	entire	paragraph	(like	these	bullet	points)	so	the	brain	still	processes	the	information	easily.	To	make	your	website	easier	for	the	visually
impaired	or	for	those	with	reading	disabilities,	text	alignment	makesa	difference.	So	take	a	look	at	your	blog,	website,	or	email	newsletter	and	adjust	the	text	alignment.	In	the	meantime,	keep	swimming	along!	Click	To	TweetI	see	it	time	and	time	again	with	UI	and	web	design	people	love	centering,	justifying,	and	right	aligning	text.	People	think	this

may	make	their	text	look	pretty	or	my	favourite	forbidden	word	in	web	design,	clean.	But	in	reality,	this	is	another	example	of	people	sacrificing	user	experiencing	(UX)	for	user	interface	design	(UI).	Its	time	to	put	a	stop	to	this!	Does	text	alignment	matter	for	accessibility?	Lets	jump	in.	The	4	types	of	alignment	in	graphic,	UI,	and	web	design	are:In
terms	of	specifically	web	design,	these	types	of	alignment	are	used	in	different	ways.Left	alignment	is	by	the	most	popular	text	alignment,	and	also	the	default	one.	Left	alignment	is	commonly	associated	with	lengthy	paragraph	text,	which	enables	it	to	be	as	easy	as	possible	to	read.Center	alignment	is	used	more	sparingly	and	for	visual	appeal	like
with	these	common	3	or	4	column	layouts	on	homepages.	I	also	often	see	it	at	the	bottom	of	pages	as	call	to	actions,	giving	less	lengthy	content	better	symmetry.Right	alignment	is	rarely	used,	if	ever.	But	if	it	is	used,	its	to	align	text	up	to	another	element	for	more	visual	flare.And	lastly	justified	alignment	is	used	more	commonly	with	minimal	or
luxurious	design	styles	to	give	it	some	visual	taste	and	elegance.Left	is	the	most	popular	and	default	text	alignment.	Its	the	best	for	readability	and	user	experience	because	of	the	way	our	eyes	read.Right	alignment	is	probably	the	most	uncommon	alignment	used,	and	when	it	is	used	its	typically	used	in	small	quantities.A	great	example	of	right
alignment	being	used	effectively	is	in	the	website	navigation.	With	right	alignment,	you	can	include	a	CTA	button	In	the	top	right	and	have	the	main	links	align	with	it	nicely	making	the	navigation	very	scannable.Right-aligned	navigationRight	alignment	should	be	used	sparingly	at	best,	as	right	alignment	isnt	good	for	user	experience	and	readability.
There	are	some	rare	cases	that	it	can	actually	make	sense	if	used	in	low	uses,	like	in	this	modern	business	letterhead	example.As	a	rule	of	thumb,	right	alignment	should	not	be	used	if	you	are	aligning	text	with	more	than	5	words	at	a	time.	This	keeps	the	user	experience	in	check	while	still	adding	in	some	rebellious	formatting.In	the	example	to	the
right,	the	right-aligned	text	on	has	a	maximum	of	3	words	per	line	which	limits	the	negative	user	experience	to	be	insignificant	at	worst	making	it	a	good	use	case.I	should	mention	that	right-aligned	text	is	different	than	right-aligned	elements.	Right-aligned	elements	work	well	in	most	cases,	and	can	actually	help	make	use	of	otherwise	unused	space.
In	the	letterhead	picture,	its	okay	that	the	content	area	is	right-aligned,	its	the	right	text-align	in	that	content	area	where	my	critiques	lay.Center	alignment	can	look	great	in	small	doses,	but	it	can	lead	to	problems	when	people	overuse	it.The	reason	why	center	text	alignment	is	horrible	for	user	experience	is	that	with	each	new	line	the	user	reads,
there	is	a	brief	moment	where	the	user	has	to	find	where	the	next	line	begins	decreasing	the	users	reading	speed.Intentionally	handicapping	your	users	ease	of	reading?	Hell	yes!	This	is	what	I	think	goes	through	peoples	heads	when	they	decide	to	center	a	large	paragraph.What	youll	find	is	that	in	most	cases	centered	text	makes	it	worse	for	user
experience.	However	there	are	some	limits	and	exceptions	of	center	alignment.Why	oh	why	are	we	doing	this.	Oh	yes,	because	its	pretty.	Centered	text	has	become	such	a	common	occurrence,	especially	in	website	design.In	my	opinion	centered	paragraphs	are	only	acceptable	up	to	a	point,	3	lines	of	text	to	be	specific.	Anymore,	it	becomes	too
displeasing	to	read	each	line	after.Here	are	some	examples:This	is	an	acceptable	length	of	text	in	a	paragraph	to	center	align.	No	more	than	three	lines	of	text.This	is	a	much	longer	paragraph	with	a	length	that	is	displeasing	to	read	because	of	the	number	of	times	you	have	to	find	the	beginning	of	the	next	line.	Centered	paragraph	text	should	be
limited	and	used	sparingly	so	it	doesnt	make	the	user	annoyed	to	read	your	text	content.	Notice	all	the	content	on	this	blog	is	left	aligned?	Thats	called	user	experience,	and	dont	you	forget	it!You	can	just	see	from	the	second	example	the	paragraph	is	flat-out	annoying	to	read.	This	only	gets	worse	on	mobile	devices.	This	is	why	left	alignment	should
be	used	95%	of	the	time.Primary	page	titles	should	be	okay	centered	as	they	tend	to	not	have	as	many	words	and	therefore	lines	of	text.	Most	page	titles	arent	long	enough	that	text	alignment	becomes	an	issue	with	usability.	However,	with	secondary	titles	(h2s)	and	anything	under	should	always	be	left-aligned	to	match	its	paragraph	text.An	example
of	google	title	alignment	is	this	blog	post.	At	the	title	section	at	the	top,	I	use	left	alignment	because	some	of	the	titles	of	some	of	my	articles	may	get	long	enough	that	centering	the	text	would	become	annoying	to	read	and	so	I	use	left	alignment.Justified	text	looks	like	if	center	alignment	and	left	alignment	had	a	child	together.	Justified	text	makes
your	paragraphs	look	like	blocks	and	defined	have	sides.It	works	by	changing	the	spacing	between	each	word	depending	on	how	many	words	it	best	sees	can	fit	onto	one	line.	The	spacing	between	the	words	in	the	same	for	each	line,	but	changes	for	the	next.The	different	spacings	between	each	word	because	of	justified-aligned	textThe	idea	behind
using	justified	text	is	that	it	looks	more	visually	appealing	than	if	left-justified	alignment	was	used.	Hence	its	common	use	in	books	and	written	material.What	can	very	easily	happen	with	justified	alignment	is	in	narrow	columns	or	lines	with	a	lot	of	long	words,	there	can	be	massive	awkward	spacings	between	each	word.	Sometimes	its	so	bad	where	it
splits	up	words	into	syllables.	This	creates	for	a	bad	user	experience,	making	the	text	hard	to	read.This	might	happen	without	you	knowing,	if	text	is	scaled/resized	in	such	a	way	to	force	the	text	like	that.When	justified	alignment	is	used	in	books	or	magazines,	there	are	people	that	go	through	each	page	and	manually	adjust	the	spacing	to	get	rid	of
any	of	those	awkward	spacings	and	even	add	hyphens	if	necessary.	This	is	completely	unreasonable	to	do	on	a	website,	there	are	just	too	many	different	screen	sizes,	screen	resolutions,	and	zoom	levels	to	have	justified	text	on	a	website	without	having	awkward	alignment	for	at	least	someone.Books	and	magazines	are	by	far	the	most	common	source
of	justified	text	out	there.	They	love	using	justified	text	because	it	looks	more	visually	appealing,	and	looks	more	professional.It	can	even	save	on	printing	costs	due	to	the	pages	saved	in	making	sure	each	line	of	text	is	used	to	its	full	width.Each	line	of	a	book	or	magazine	usually	have	enough	words	so	that	the	problems	of	justified	alignment	dont
happen.	Each	line	of	text	in	a	book	typically	has	around	60	characters	per	line,	which	is	about	10	words	per	line.	This	enables	books	to	have	the	visual	appeal	of	justified	text,	and	the	user	experience	of	left-justified	text.In	the	case	where	justified	text	doesnt	work,	left	alignment	would	be	used	to	make	word	spacing	less	distracting.	Its	common
practice	for	book	designers	and	book	formatters	to	choose	what	alignment	is	best	for	each	book	or	written	material.Overall	justified	text	has	its	uses.	It	can	definitely	add	to	the	visual	appeal	of	paragraphs	on	a	page,	but	if	not	used	with	caution	it	can	cause	the	text	to	look	fragmented	detracting	from	a	positive	user	experience.Left	justified	text	is
where	its	at.	Its	familiar,	its	fast,	and	its	reliable.	Left	text	alignment	should	be	used	in	95%	of	cases	to	help	your	readers	read	at	an	optimal,	undiminished	reading	speed.You	can	use	center	alignment	in	small	doses	like	main	page	headings	without	detracting	from	the	users	experience.	Paragraph	text	can	get	away	with	being	center-aligned	if	it	has	3
or	fewer	lines	of	text,	any	more	then	left-aligned	should	be	used	as	the	text	becomes	too	notably	annoying	to	read.Only	use	justified	text	for	mediums	where	its	commonplace	like	material	books	or	e-books.Rarely	you	can	get	away	with	justified	text	on	a	website,	but	left	alignment	will	always	be	better	for	usability.	If	you	are	going	to	use	justified
alignment,	make	sure	there	are	enough	words	per	line	so	that	the	spaces	between	each	word	are	fairly	unnoticeable	from	one	line	to	the	next.Right	alignment	forces	the	reader	to	read	in	a	weird	way.	Dont	alienate	your	users	for	the	sake	of	making	your	design	feel	unique	and	special.If	you	are	going	to	use	it,	make	sure	each	line	has	3	or	less	words
per	line,	and	3	or	less	lines	of	text	all	together.The	only	commonplace	acceptable	use	of	right	alignment	is	navigations	on	websites.	To	horizontally	center	a	block	element	(like	div),	use	margin:	auto;	Nearly	all	browsers	nowadays	support	CSS	and	many	other	applications	do,	too.	To	write	CSS,	you	don't	need	more	than	a	text	editor,	but	there	are
many	tools	available	that	make	it	even	easier.	Of	course,	all	software	has	bugs,	even	after	several	updates.	And	some	programs	are	further	ahead	implementing	the	latest	CSS	modules	than	others.	Various	sites	describe	bugs	and	work-arounds.	More	For	beginners,	Starting	with	HTML	+	CSS	teaches	how	to	create	a	style	sheet.	For	a	quick
introduction	to	CSS,	try	chapter	2	of	Lie	&	Bos	or	Dave	Raggett's	intro	to	CSS.	Or	see	examples	of	styling	XML	and	CSS	tips	&	tricks.	Another	page	also	has	some	books,	mailing	lists	and	similar	fora,	and	links	to	other	directories.	The	history	of	CSS	is	described	in	chapter20	of	the	book	Cascading	Style	Sheets,	designing	for	the	Web,	by	Hkon	Wium
Lie	and	Bert	Bos	(2nd	ed.,	1999,	Addison	Wesley,	ISBN	0-201-59625-3)	More	CSS	inspired	quayjn	to	write	the	song	CSS	is	OK.	Site	navigation	I	see	it	time	and	time	again	with	UI	and	web	design	people	love	centering,	justifying,	and	right	aligning	text.	People	think	this	may	make	their	text	look	pretty	or	my	favourite	forbidden	word	in	web	design,
clean.	But	in	reality,	this	is	another	example	of	people	sacrificing	user	experiencing	(UX)	for	user	interface	design	(UI).	Its	time	to	put	a	stop	to	this!	Does	text	alignment	matter	for	accessibility?	Lets	jump	in.	The	4	types	of	alignment	in	graphic,	UI,	and	web	design	are:In	terms	of	specifically	web	design,	these	types	of	alignment	are	used	in	different
ways.Left	alignment	is	by	the	most	popular	text	alignment,	and	also	the	default	one.	Left	alignment	is	commonly	associated	with	lengthy	paragraph	text,	which	enables	it	to	be	as	easy	as	possible	to	read.Center	alignment	is	used	more	sparingly	and	for	visual	appeal	like	with	these	common	3	or	4	column	layouts	on	homepages.	I	also	often	see	it	at	the
bottom	of	pages	as	call	to	actions,	giving	less	lengthy	content	better	symmetry.Right	alignment	is	rarely	used,	if	ever.	But	if	it	is	used,	its	to	align	text	up	to	another	element	for	more	visual	flare.And	lastly	justified	alignment	is	used	more	commonly	with	minimal	or	luxurious	design	styles	to	give	it	some	visual	taste	and	elegance.Left	is	the	most
popular	and	default	text	alignment.	Its	the	best	for	readability	and	user	experience	because	of	the	way	our	eyes	read.Right	alignment	is	probably	the	most	uncommon	alignment	used,	and	when	it	is	used	its	typically	used	in	small	quantities.A	great	example	of	right	alignment	being	used	effectively	is	in	the	website	navigation.	With	right	alignment,	you
can	include	a	CTA	button	In	the	top	right	and	have	the	main	links	align	with	it	nicely	making	the	navigation	very	scannable.Right-aligned	navigationRight	alignment	should	be	used	sparingly	at	best,	as	right	alignment	isnt	good	for	user	experience	and	readability.	There	are	some	rare	cases	that	it	can	actually	make	sense	if	used	in	low	uses,	like	in	this
modern	business	letterhead	example.As	a	rule	of	thumb,	right	alignment	should	not	be	used	if	you	are	aligning	text	with	more	than	5	words	at	a	time.	This	keeps	the	user	experience	in	check	while	still	adding	in	some	rebellious	formatting.In	the	example	to	the	right,	the	right-aligned	text	on	has	a	maximum	of	3	words	per	line	which	limits	the	negative
user	experience	to	be	insignificant	at	worst	making	it	a	good	use	case.I	should	mention	that	right-aligned	text	is	different	than	right-aligned	elements.	Right-aligned	elements	work	well	in	most	cases,	and	can	actually	help	make	use	of	otherwise	unused	space.	In	the	letterhead	picture,	its	okay	that	the	content	area	is	right-aligned,	its	the	right	text-
align	in	that	content	area	where	my	critiques	lay.Center	alignment	can	look	great	in	small	doses,	but	it	can	lead	to	problems	when	people	overuse	it.The	reason	why	center	text	alignment	is	horrible	for	user	experience	is	that	with	each	new	line	the	user	reads,	there	is	a	brief	moment	where	the	user	has	to	find	where	the	next	line	begins	decreasing
the	users	reading	speed.Intentionally	handicapping	your	users	ease	of	reading?	Hell	yes!	This	is	what	I	think	goes	through	peoples	heads	when	they	decide	to	center	a	large	paragraph.What	youll	find	is	that	in	most	cases	centered	text	makes	it	worse	for	user	experience.	However	there	are	some	limits	and	exceptions	of	center	alignment.Why	oh	why
are	we	doing	this.	Oh	yes,	because	its	pretty.	Centered	text	has	become	such	a	common	occurrence,	especially	in	website	design.In	my	opinion	centered	paragraphs	are	only	acceptable	up	to	a	point,	3	lines	of	text	to	be	specific.	Anymore,	it	becomes	too	displeasing	to	read	each	line	after.Here	are	some	examples:This	is	an	acceptable	length	of	text	in	a
paragraph	to	center	align.	No	more	than	three	lines	of	text.This	is	a	much	longer	paragraph	with	a	length	that	is	displeasing	to	read	because	of	the	number	of	times	you	have	to	find	the	beginning	of	the	next	line.	Centered	paragraph	text	should	be	limited	and	used	sparingly	so	it	doesnt	make	the	user	annoyed	to	read	your	text	content.	Notice	all	the
content	on	this	blog	is	left	aligned?	Thats	called	user	experience,	and	dont	you	forget	it!You	can	just	see	from	the	second	example	the	paragraph	is	flat-out	annoying	to	read.	This	only	gets	worse	on	mobile	devices.	This	is	why	left	alignment	should	be	used	95%	of	the	time.Primary	page	titles	should	be	okay	centered	as	they	tend	to	not	have	as	many
words	and	therefore	lines	of	text.	Most	page	titles	arent	long	enough	that	text	alignment	becomes	an	issue	with	usability.	However,	with	secondary	titles	(h2s)	and	anything	under	should	always	be	left-aligned	to	match	its	paragraph	text.An	example	of	google	title	alignment	is	this	blog	post.	At	the	title	section	at	the	top,	I	use	left	alignment	because
some	of	the	titles	of	some	of	my	articles	may	get	long	enough	that	centering	the	text	would	become	annoying	to	read	and	so	I	use	left	alignment.Justified	text	looks	like	if	center	alignment	and	left	alignment	had	a	child	together.	Justified	text	makes	your	paragraphs	look	like	blocks	and	defined	have	sides.It	works	by	changing	the	spacing	between	each
word	depending	on	how	many	words	it	best	sees	can	fit	onto	one	line.	The	spacing	between	the	words	in	the	same	for	each	line,	but	changes	for	the	next.The	different	spacings	between	each	word	because	of	justified-aligned	textThe	idea	behind	using	justified	text	is	that	it	looks	more	visually	appealing	than	if	left-justified	alignment	was	used.	Hence
its	common	use	in	books	and	written	material.What	can	very	easily	happen	with	justified	alignment	is	in	narrow	columns	or	lines	with	a	lot	of	long	words,	there	can	be	massive	awkward	spacings	between	each	word.	Sometimes	its	so	bad	where	it	splits	up	words	into	syllables.	This	creates	for	a	bad	user	experience,	making	the	text	hard	to	read.This
might	happen	without	you	knowing,	if	text	is	scaled/resized	in	such	a	way	to	force	the	text	like	that.When	justified	alignment	is	used	in	books	or	magazines,	there	are	people	that	go	through	each	page	and	manually	adjust	the	spacing	to	get	rid	of	any	of	those	awkward	spacings	and	even	add	hyphens	if	necessary.	This	is	completely	unreasonable	to	do
on	a	website,	there	are	just	too	many	different	screen	sizes,	screen	resolutions,	and	zoom	levels	to	have	justified	text	on	a	website	without	having	awkward	alignment	for	at	least	someone.Books	and	magazines	are	by	far	the	most	common	source	of	justified	text	out	there.	They	love	using	justified	text	because	it	looks	more	visually	appealing,	and	looks
more	professional.It	can	even	save	on	printing	costs	due	to	the	pages	saved	in	making	sure	each	line	of	text	is	used	to	its	full	width.Each	line	of	a	book	or	magazine	usually	have	enough	words	so	that	the	problems	of	justified	alignment	dont	happen.	Each	line	of	text	in	a	book	typically	has	around	60	characters	per	line,	which	is	about	10	words	per
line.	This	enables	books	to	have	the	visual	appeal	of	justified	text,	and	the	user	experience	of	left-justified	text.In	the	case	where	justified	text	doesnt	work,	left	alignment	would	be	used	to	make	word	spacing	less	distracting.	Its	common	practice	for	book	designers	and	book	formatters	to	choose	what	alignment	is	best	for	each	book	or	written
material.Overall	justified	text	has	its	uses.	It	can	definitely	add	to	the	visual	appeal	of	paragraphs	on	a	page,	but	if	not	used	with	caution	it	can	cause	the	text	to	look	fragmented	detracting	from	a	positive	user	experience.Left	justified	text	is	where	its	at.	Its	familiar,	its	fast,	and	its	reliable.	Left	text	alignment	should	be	used	in	95%	of	cases	to	help
your	readers	read	at	an	optimal,	undiminished	reading	speed.You	can	use	center	alignment	in	small	doses	like	main	page	headings	without	detracting	from	the	users	experience.	Paragraph	text	can	get	away	with	being	center-aligned	if	it	has	3	or	fewer	lines	of	text,	any	more	then	left-aligned	should	be	used	as	the	text	becomes	too	notably	annoying	to
read.Only	use	justified	text	for	mediums	where	its	commonplace	like	material	books	or	e-books.Rarely	you	can	get	away	with	justified	text	on	a	website,	but	left	alignment	will	always	be	better	for	usability.	If	you	are	going	to	use	justified	alignment,	make	sure	there	are	enough	words	per	line	so	that	the	spaces	between	each	word	are	fairly
unnoticeable	from	one	line	to	the	next.Right	alignment	forces	the	reader	to	read	in	a	weird	way.	Dont	alienate	your	users	for	the	sake	of	making	your	design	feel	unique	and	special.If	you	are	going	to	use	it,	make	sure	each	line	has	3	or	less	words	per	line,	and	3	or	less	lines	of	text	all	together.The	only	commonplace	acceptable	use	of	right	alignment
is	navigations	on	websites.	Get	ready	to	learn	how	to	approach	the	age	old	question	faced	by	many	a	CSS	practitioner:	"How	do	I	center	a	div?"	The	holy	grail:	vertical	and	horizontal	centering,	aka	centering	along	both	the	x-axis	and	the	y-axis.	The	most	modern	and	easiest	way	is	with	the	following	two	lines	of	CSS:	CSS	for	"XY	Grid	Solution".grid	{
display:	grid;	place-content:	center;}	We	are	centered!	We	are	centered!GotchasCollapse	of	child	grid	using	auto-fit	or	auto-fillGiven	a	child	grid	that	uses	the	following	styles:grid-template-columns:	repeat([auto-fit	or	auto-fill],	minmax(10ch,	1fr));The	child	grid	will	collapse	in	on	itself,	in	this	case	down	to	the	min	part	of	minmax,	due	to	the	justify-
content	set	in	the	place-content	shorthand.	CSS	for	"auto-fit	fixed".grid-autofit	{	display:	grid;	grid-template-columns:	repeat(auto-fit,	minmax(10ch,	1fr));}	The	fix	is	two-fold:	switch	the	grid	centering	technique	to	use	place-items	instead	of	place-content,	and	then	to	specifically	define	that	the	child	grid	should	be	width:	100%	or	whatever	you'd
prefer	as	a	width	value	to	create	space	for	the	grid	columns.	CSS	for	"auto-fit	collapse".grid	{	display:	grid;	place-items:	center;}	.grid-autofit	{	display:	grid;	grid-template-columns:	repeat(auto-fit,	minmax(10ch,	1fr));	width:	80%;}	Alternatively,	you	can	use	the	very	slightly	more	verbose	Flexbox	version:	CSS	for	"XY	Flex	Solution".flex	{	display:	flex;
align-items:	center;	justify-content:	center;}	GotchasFlexbox	has	a	slightly	different	behavior	when	a	second	item	is	added	since	flex	items	default	to	placement	along	the	x-axis:	CSS	for	"XY	Flex	Gotcha".flex	{	display:	flex;	align-items:	center;	justify-content:	center;}	We	are	centered!	...Sort	of!One	way	to	resolve	this	is	by	adding	flex-direction:
column:	CSS	for	"XY	Flex	Gotcha	fixed".flex	{	display:	flex;	flex-direction:	column;	align-items:	center;	justify-content:	center;}	Alternatively,	wrap	the	children	in	a	single	element,	especially	if	you	don't	want	them	to	be	affected	by	the	outer	flexbox	alignment.If	a	child	element	uses	grid	with	auto-fit	or	auto-fill	it	will	encounter	the	same	issue	as	when
the	parent	container	is	grid	as	described	previously.	margin:	auto	is	unique	for	flexbox	and	grid,	and	in	the	case	you	have	only	one	child	item,	you	can	do	the	following	for	either	flex	or	grid.	CSS	for	"XY	Alternative	Flexbox	Solution".flex	{	display:	flex;}	.grid	{	display:	grid;}	.only-child	{	margin:	auto;}The	auto	behavior	for	flex	children,	unlike
childfren	of	block	elements,	can	also	be	applied	vertically	which	allows	this	solution	to	work.	If	you	are	unable	to	switch	to	grid	or	flexbox	layout,	here's	a	modern	solution	to	this	classic	problem.Ensure	the	child	elements	are	wrapped	in	a	containing	element	for	the	following	to	work:	CSS	for	"XY	Centering	for	Block	Elements".parent	{	position:
relative;}	.child-wrapper	{	position:	absolute;	top:	50%;	left:	50%;	transform:	translate(-50%,	-50%);}	This	combo	works	because	when	a	percentage	value	is	supplied	to	a	translate	definition,	it	based	the	percentage	on	the	computed	width	(translateX)	or	height	(translateY).	In	this	example,	we	use	shorthand	to	apply	both	x	and	y	values	to
translate().Absolute	positioning	takes	an	element	out	of	normal	document	flow	after	which	we	can	apply	precise	values	(as	needed)	to	control	its	positioning	in	the	document,	or	in	this	case,	relative	to	the	parent	with	the	required	position:	relative	on	the	parent	element.After	absolutely	positioning	the	child	from	the	top	50%	and	left	50%,	which	is	50%
of	the	parent's	height	and	width,	respectively,	we	then	use	translate(-50%,	-50%)	to	pull	the	child	back	up	50%	of	its	own	height	and	back	left	50%	of	its	own	width.	This	results	in	a	centered	appearance	that	scales	with	the	content.GotchasBecause	we've	used	absolute	posoitioning,	there's	a	chance	the	content	will	grow	to	overflow	the	parent,	even	if
like	in	the	demo	the	parent	has	a	min-width	which	typically	grows	with	the	content	except	for	absolute	children.The	fix	for	this	is:	use	grid	or	flexbox	:)	Or	prepare	to	create	#allthemediaqueries.	Solutions	for	centering	vertically,	aka	on	the	y-axis.	We	only	need	one	property	to	vertically	align	in	grid:	CSS	for	"Y	Grid	Solution".grid	{	display:	grid;	align-
content:	center;}	I	am	centered	vertically!	Me	too!Use	of	align-content	is	scalable	for	multiple	child	elements.It	also	works	if	we	switch	the	default	grid	axis	to	x	with	grid-auto-flow:	column:	CSS	for	"Y	Grid	Solution	for	columns".grid	{	display:	grid;	align-content:	center;	grid-auto-flow:	column;}	I	am	centered	vertically!	Me	too!	Flexbox	items	can	be
vertically	aligned	with:	CSS	for	"Y	Flexbox	Solution".flex	{	display:	grid;	align-items:	center;}	I	am	centered	vertically!	Me	too!GotchasIf	you	switch	the	default	axis	by	adding	flex-direction:	column	this	solution	fails.	CSS	for	"Y	Flexbox	Gotcha	for	flex-direction:	column".flex	{	display:	grid;	flex-direction:	column;	align-items:	center;}	Now	I	am
centered...	horizontally?	Hmm,	me	too...A	huge	cuplprit	of	issues	when	dealing	with	flexbox	is	missing	that	flipping	the	default	axis	flips	the	associated	properties.For	column,	or	y-axis	flex	layout,	instead	of	align-items	we	now	need	to	use:	CSS	for	"Y	Flexbox	Gotcha	fix	for	flex-direction:	column".flex	{	display:	grid;	flex-direction:	column;	justify-
content:	center;}	I	am	centered	vertically!	Me	too!	If	possible,	switch	the	layout	model	and	use	flex	or	grid.Otherwise,	much	like	the	XY	solution,	we'll	use	absolute	positioning	and	transform,	but	only	apply	to	translateY	to	move	the	child	50%	of	its	height.	CSS	for	"Y	Flexbox	Gotcha	fix	for	flex-direction:	column".parent	{	position:	relative;}	.child-
wrapper	{	position:	absolute;	top:	50%;	transform:	translateY(-50%);}	I	am	centered	vertically!	Me	too!	See	XY	Centering	for	Block	Elements	to	learn	why	this	works.	Solutions	for	centering	horizontally,	aka	on	the	x-axis.	The	justify-	properties	are	for	x-axis	alignment:	CSS	for	"X	Grid	Solution".grid	{	display:	grid;	justify-content:	center;}	I	am
centered	horizontally!	Me	too!Again,	this	holds	up	if	we	switch	the	default	axis	with:	CSS	for	"X	Grid	Solution	for	columns".grid	{	display:	grid;	justify-content:	center;	grid-auto-flow:	column;}	I	am	centered	horizontally!	Me	too!	To	center	along	the	x-axis,	which	is	the	default	flexbox	axis	for	child	item	alignment,	use:	CSS	for	"X	Flexbox	Solution".flex
{	display:	flex;	justify-content:	center;}	I	am	centered	horizontally!	Me	too!GotchasAt	this	point,	you	know	what's	coming	-	this	will	fail	for	flex-direction:	column.We'll	fix	it	by	using	align-items	instead	of	justify-content:	CSS	for	"X	Flexbox	Solution	for	flex-direction:	column".flex	{	display:	flex;	flex-direction:	column	align-items:	center;}	I	am	centered
horizontally!	Me	too!	This	is	the	classic	solution	of	using	auto	margins,	although	it	must	be	placed	on	each	element	you	wish	to	center	individually.For	the	demo,	I've	also	set	a	width	since	by	default	block	elements	take	up	the	full-width	of	their	container,	which	visually	opposes	the	centering.	CSS	for	"X	Centering	for	Block	Elements".block	div	{
margin-left:	auto;	margin-right:	auto;	width:	60%;}	I	am	centered	horizontally!	Me	too!	The	use	case	here	is	for	components	like	dropdown	menus	or	tooltips	when	there	is	a	requirement	for	centering	of	items	of	dynamic/unknown	width	relative	to	the	associated	trigger.We'll	use	a	method	similar	to	Y	Centering	for	Block	Elements,	but	using	left	and
translateX	properties:	CSS	for	"X	Centering	for	Dynamically	Positioned	Elements".parent	{	position:	relative;}	.child-wrapper	{	position:	absolute;	left:	50%;	transform:	translateX(-50%);}	I	am	centered	horizontally!	Me	too!	On:	8	Feb	2013	By:	Joshua	Johnson	Category:	Layouts	Length:	6	min	read	Today	were	going	to	go	back	to	basics	with	a	design
101	discussion	on	alignments.	Centered	alignments	are	an	easy	place	to	go	wrong	and	if	you	dont	know	how	to	wield	them	properly,	the	result	is	a	very	poorly	structured	page.Join	us	as	we	take	a	look	at	why	centered	alignments	tend	to	be	weak,	where	you	should	avoid	them	and	how	you	should	be	using	them.	Envato	gives	you	unlimited	access	to
22+	million	pro	design	resources,	themes,	templates,	photos,	graphics	and	more.	Everything	you'll	ever	need	in	your	design	resource	toolkit.	See	More	Centered	AlignmentsOne	of	the	first	things	that	youll	learn	in	any	basic	design	layout	class	is	that	centered	alignments	are	weak.	Now,	thats	a	blanket	statement	that	might	immediately	cause	you	to
protest,	but	well	explore	this	more	in-depth	in	a	minute.Centered	alignments	are	by	no	means	something	only	used	by	beginners	and	non-designers,	but	they	do	in	fact	tend	to	be	the	go-to	option	for	these	groups.	The	reason	for	this	is	complicated.	For	some	reason,	we	instinctively	feel	that	things	should	be	centered.	We	know	that	design	is	about
balance	and	centered	alignments	are	nothing	if	not	balanced,	so	they	make	sense.	Secretaries,	CEOs,	teachers	and	all	other	manner	of	other	professionals	that	dip	their	toe	into	design	almost	always	run	straight	for	centered	alignments	on	any	project.	In	practice,	centered	alignments	are	often	the	source	of	trouble	in	a	layout.	Learning	both	how	to
identify	and	how	to	fix	these	problems	is	a	major	step	in	your	early	design	education.	The	Problem	with	Centered	AlignmentsIts	difficult	to	explain	the	faults	of	pure	centered	alignments	with	theory	alone	so	lets	take	a	look	at	an	example.	Lets	say	youre	making	little	flyers	to	hand	out	for	an	upcoming	party.	The	result	that	a	non-designer	will	come	up
with	will	almost	always	look	something	like	this:This	isnt	a	hideous	flyer,	in	fact	Ive	seen	far	worse	in	the	real	world.	However,	for	a	number	of	reasons,	its	definitely	not	what	you	would	call	a	strong	design.	If	you	handed	me	the	flyer	design	above	and	told	me	to	improve	it	as	much	as	possible	in	only	three	minutes	while	keeping	the	overall
personality,	this	is	what	I	would	give	back	to	you:This	design	simply	feels	better,	and	not	just	because	I	refuse	to	ever	use	the	Party	LET	typeface,	especially	when	typing	the	word	party.	I	also	split	up	the	content	a	little	better	added	some	emphasis	points	and,	most	importantly,	changed	to	a	left	alignment.	Notice	how	the	left	alignment	feels	very
anchored.	The	text	on	the	page	has	a	clear	starting	point	and	you	can	follow	that	hard	edge	all	the	way	from	top	to	bottom.	Despite	the	fact	that	the	first	flyer	feels	balanced,	it	doesnt	feel	anywhere	near	as	structured.	When	To	Stay	Away	from	Centered	AlignmentsAll	right,	so	you	get	the	point:	left	alignments	are	good,	centered	alignments	are	bad,
so	what?	The	reality	is	a	little	more	complicated	than	that.	Theres	nothing	inherently	bad	about	a	centered	alignment,	you	just	have	to	know	how	to	properly	yield	one	if	youre	going	to	implement	it	with	any	amount	of	success.The	first	thing	you	need	to	learn	is	when	not	to	implement	a	centered	alignment.	The	answer	here	is	pretty	simple:	when	you
have	a	lot	of	content.	As	we	saw	in	the	last	example,	centered	alignments	are	pretty	poor	for	large	blocks	of	text.	The	lack	of	a	hard	edge	makes	reading	difficult	and	erratic.	The	same	goes	for	relying	on	a	centered	layout	for	your	page	as	a	whole,	most	of	the	time,	its	simply	not	the	best	idea.	The	website	wireframe	below	is	quite	problematic	from	a
layout	standpoint.Now,	dont	read	that	as	advising	against	centering	your	content	on	the	page.	Theres	a	difference	between	building	a	website	that	uses	a	centered	container	and	a	website	that	uses	a	center	alignment.	You	can	easily	have	left	or	right	aligned	content	that	is	still	centered	in	the	browser	window	using	margin:	0	auto.	Thats	another
conversation	entirely.AestheticsAlso,	dont	confuse	this	as	a	matter	of	aesthetics.	As	the	page	below	shows,	you	can	create	beautiful	sites	that	rely	heavily	on	centered	alignments.	Its	very	important	in	any	design	to	analyze	your	goals.	If	a	significant	degree	of	readability	is	one	of	them,	and	it	often	should	be,	then	aesthetic	appeal	is	often	completely
separate	or	even	directly	at	odds	with	this	goal.	The	trick	is	to	find	the	balance	between	the	two.The	end	result	is	almost	always	going	to	be	completely	subjective.	The	designer	above	decided	that	this	chunk	of	content	was	small	enough	to	be	center	aligned.	I	may	think	its	pushing	the	limit	a	little	but	that	doesnt	mean	Im	right	and	he/she	is	wrong,	it
just	means	we	draw	the	line	in	different	places.	How	to	Use	Centered	AlignmentsNow,	with	all	of	that	said,	there	is	no	reason	that	you	should	abandon	using	centered	alignments	altogether.	To	do	so	would	be	to	remove	a	key	element	from	your	layout	toolbox.	Once	again,	you	just	have	to	know	how	to	use	the	tool	to	be	successful	with	it.There	are	a
million	different	ways	to	successfully	implement	a	centered	layout	so	dont	imagine	that	the	following	examples	are	exhaustive.	However,	they	can	serve	as	a	way	for	you	to	start	to	get	a	feel	for	a	solid	layout	versus	a	weak	one.Very	Little	ContentOne	of	the	first	places	you	can	start	to	think	about	implementing	a	completely	centered	layout	is	when	you
have	very	little	content.	Check	out	the	example	below.This	makes	perfect	sense,	if	the	main	problem	with	centered	alignments	is	that	they	dont	hold	up	well	with	a	lot	of	content,	then	theyll	likely	be	just	fine	if	you	only	have	a	few	items.	In	fact,	theyre	usually	better	under	these	circumstances.	If	you	implemented	a	left	alignment	with	the	design	above,
the	page	would	likely	look	very	empty.	However,	with	the	current	centered	layout,	it	looks	classy	and	well-spaced.Selective	ApplicationAvoiding	centered	layouts	for	anything	but	the	simplest	designs	sounds	like	an	awfully	restrictive	way	to	design,	and	it	is.	The	key	is	to	not	avoid	them	all	together	but	instead	to	apply	them	selectively	within	a	greater
design	with	a	stronger	alignment.A	beginners	layout	class	might	teach	you	to	grab	one	alignment	and	stick	to	it,	but	as	you	improve	youll	find	that	mixing	alignments	is	often	a	great	way	to	add	some	variety	to	a	design.	As	an	example,	check	out	the	awesome	page	below	from	Assistly.com.Here	we	see,	on	the	whole,	the	layout	contains	fairly	consistent
left	and	right	edges.	However,	there	are	very	specific	portions	that	revert	to	a	centered	alignment.	The	headline	is	the	most	natural	and	most	popular	place	to	attempt	this.	Large,	centered	headlines	and	subheads	look	great	in	justified	layouts.	Also	notice	the	smaller	areas	like	the	three	columns	in	the	bottom	left,	another	natural	place	for	a	centered
alignment	to	be	implemented.	Once	again,	each	of	these	blocks	contains	a	fairly	small	amount	of	content	so	the	result	isnt	overwhelming.	Quick	Tip:	Wrap	It	UpOne	of	the	simplest	and	most	useful	tricks	for	implementing	centered	text	alignments	within	a	larger	layout	is	shown	in	the	example	below.First,	look	at	this	page	as	a	series	of	blocks.	Notice
that	all	of	the	have	a	fairly	justified	alignment.	With	the	exception	of	the	left-aligned	navigation,	theres	both	a	hard	left	and	a	hard	right	edge	that	defines	the	content.	Now,	within	that	framework	I	have	a	little	more	freedom	to	play	around.	Notice	that	Box	One	and	Box	Two	actually	contain	centered	content,	but	the	containment	devices	keep	them
looking	perfect	within	the	overall	layout.Anytime	you	have	some	center-aligned	content	that	just	doesnt	feel	like	its	working,	try	wrapping	it	in	a	box	that	conforms	to	the	overall	page	layout	to	see	if	the	design	improves.ConclusionTo	sum	up,	centered	alignments	are	weak,	but	not	bad.	Theres	a	very	important	distinction	there	that	you	really	must
grasp	to	be	a	good	designer.	Weak	implies	that	they	can	easily	be	taken	too	far	and	are	easy	to	abuse.	However,	you	can	and	should	be	using	centered	alignments	in	your	designs.Make	sure	that,	if	your	entire	layout	is	built	on	a	centered	alignment,	you	have	a	very	simple	design	with	only	a	few	items.	Once	you	start	adding	big	blocks	of	text	and	lots	of
images,	the	centered	alignments	starts	looking	messy.	Also,	try	building	a	solid	left,	justified	or	even	right	alignment	for	your	page	as	a	whole,	then	experiment	with	selectively	dropping	in	centered	alignments	in	key	areas	such	as	headlines.	Finally,	as	a	quick	trick	when	youre	in	a	jam,	try	wrapping	center-aligned	portions	in	a	box	that	goes	with	the
flow	of	the	rest	of	the	page.	In	this	recipe,	you	will	see	how	to	center	one	box	inside	another	by	using	flexbox	and	grid,	centering	content	both	horizontally	and	vertically.To	place	an	item	into	the	center	of	another	box	horizontally	and	vertically.Click	"Play"	in	the	code	blocks	below	to	edit	the	example	in	the	MDN	Playground:	I	am	centered!.item	{
border:	2px	solid	rgb(95	97	110);	border-radius:	0.5em;	padding:	20px;	width:	10em;}.container	{	border:	2px	solid	rgb(75	70	74);	border-radius:	0.5em;	font:	1.2em	sans-serif;	height:	200px;	display:	flex;	align-items:	center;	justify-content:	center;}To	center	a	box	within	another	box,	first	turn	the	containing	box	into	a	flex	container	by	setting	its
display	property	to	flex.	Then	set	align-items	to	center	for	vertical	centering	(on	the	block	axis)	and	justify-content	to	center	for	horizontal	centering	(on	the	inline	axis).	And	that's	all	it	takes	to	center	one	box	inside	another!	I	am	centered!div	{	border:	solid	3px;	padding:	1em;	max-width:	75%;}.item	{	border:	2px	solid	rgb(95	97	110);	border-radius:
0.5em;	padding:	20px;	width:	10em;}.container	{	height:	8em;	border:	2px	solid	rgb(75	70	74);	border-radius:	0.5em;	font:	1.2em	sans-serif;	display:	flex;	align-items:	center;	justify-content:	center;}We	set	a	height	for	the	container	to	demonstrate	that	the	inner	item	is	indeed	vertically	centered	within	the	container.Instead	of	applying	align-items:
center;	on	the	container,	you	can	also	vertically	center	the	inner	item	by	setting	align-self	to	center	on	the	inner	item	itself.Another	method	you	can	use	for	centering	one	box	inside	another	is	to	first	make	the	containing	box	a	grid	container	and	then	set	its	place-items	property	to	center	to	center	align	its	items	on	both	the	block	and	inline	axes.	I	am
centered!div	{	border:	solid	3px;	padding:	1em;	max-width:	75%;}.item	{	border:	2px	solid	rgb(95	97	110);	border-radius:	0.5em;	padding:	20px;	width:	10em;}.container	{	height:	8em;	border:	2px	solid	rgb(75	70	74);	border-radius:	0.5em;	font:	1.2em	sans-serif;	display:	grid;	place-items:	center;}Instead	of	applying	place-items:	center;	on	the
container,	you	can	achieve	the	same	centering	by	setting	place-content:	center;	on	the	container	or	by	applying	either	place-self:	center	or	margin:	auto;	on	the	inner	item	itself.	Centering	things	is	one	of	the	most	difficult	aspects	of	CSS.	The	methods	themselves	usually	aren't	difficult	to	understand.	Instead,	it's	more	due	to	the	fact	that	there	are	so
many	ways	to	center	things.	The	method	you	use	can	vary	depending	on	the	HTML	element	you're	trying	to	center,	or	whether	you're	centering	it	horizontally	or	vertically.In	this	tutorial,	we'll	go	over	how	to	center	different	elements	horizontally,	vertically,	and	both	vertically	and	horizontally.	Centering	elements	horizontally	is	generally	easier	than
centering	them	vertically.	Here	are	some	common	elements	you	may	want	to	center	horizontally	and	different	ways	to	do	it.How	to	Center	Text	with	the	CSS	Text-Align	Center	PropertyTo	center	text	or	links	horizontally,	just	use	the	text-align	property	with	the	value	center:	Hello,	(centered)	World!.container	{	font-family:	arial;	font-size:	24px;
margin:	25px;	width:	350px;	height:	200px;	outline:	dashed	1px	black;}	p	{	text-align:	center;}	Use	the	shorthand	margin	property	with	the	value	0	auto	to	center	block-level	elements	like	a	div	horizontally:	.container	{	font-family:	arial;	font-size:	24px;	margin:	25px;	width:	350px;	height:	200px;	outline:	dashed	1px	black;}	.child	{	width:	50px;
height:	50px;	background-color:	red;	margin:	0	auto;}	Flexbox	is	the	most	modern	way	to	center	things	on	the	page,	and	makes	designing	responsive	layouts	much	easier	than	it	used	to	be.	However,	it's	not	fully	supported	in	some	legacy	browsers	like	Internet	Explorer.To	center	an	element	horizontally	with	Flexbox,	just	apply	display:	flex	and	justify-
content:	center	to	the	parent	element:	.container	{	font-family:	arial;	font-size:	24px;	margin:	25px;	width:	350px;	height:	200px;	outline:	dashed	1px	black;	display:	flex;	justify-content:	center;}	.child	{	width:	50px;	height:	50px;	background-color:	red;}	Centering	elements	vertically	without	modern	methods	like	Flexbox	can	be	a	real	chore.	Here	we'll
go	over	some	of	the	older	methods	to	center	things	vertically	first,	then	show	you	how	to	do	it	with	Flexbox.	For	a	long	time	this	was	the	go-to	way	to	center	things	vertically.	For	this	method	you	must	know	the	height	of	the	element	you	want	to	center.First,	set	the	position	property	of	the	parent	element	to	relative.	Then	for	the	child	element,	set	the
position	property	to	absolute	and	top	to	50%:	.container	{	font-family:	arial;	font-size:	24px;	margin:	25px;	width:	350px;	height:	200px;	outline:	dashed	1px	black;	position:	relative;}	.child	{	width:	50px;	height:	50px;	background-color:	red;	position:	absolute;	top:	50%;}But	that	really	just	vertically	centers	the	top	edge	of	the	child	element.To	truly
center	the	child	element,	set	the	margin-top	property	to	-(half	the	child	element's	height):.container	{	font-family:	arial;	font-size:	24px;	margin:	25px;	width:	350px;	height:	200px;	outline:	dashed	1px	black;	position:	relative;}	.child	{	width:	50px;	height:	50px;	background-color:	red;	position:	absolute;	top:	50%;	margin-top:	-25px;	}	If	you	don't	know
the	height	of	the	element	you	want	to	center	(or	even	if	you	do),	this	method	is	a	nifty	trick.This	method	is	very	similar	to	the	negative	margins	method	above.	Set	the	position	property	of	the	parent	element	to	relative.	For	the	child	element,	set	the	position	property	to	absolute	and	set	top	to	50%.	Now	instead	of	using	a	negative	margin	to	truly	center
the	child	element,	just	use	transform:	translate(0,	-50%):	.container	{	font-family:	arial;	font-size:	24px;	margin:	25px;	width:	350px;	height:	200px;	outline:	dashed	1px	black;	position:	relative;}	.child	{	width:	50px;	height:	50px;	background-color:	red;	position:	absolute;	top:	50%;	transform:	translate(0,	-50%);}Note	that	translate(0,	-50%)	is
shorthand	for	translateX(0)	and	translateY(-50%).	You	could	also	write	transform:	translateY(-50%)	to	center	the	child	element	vertically.	Like	centering	things	horizontally,	Flexbox	makes	it	super	easy	to	center	things	vertically.To	center	an	element	vertically,	apply	display:	flex	and	align-items:	center	to	the	parent	element:	.container	{	font-family:
arial;	font-size:	24px;	margin:	25px;	width:	350px;	height:	200px;	outline:	dashed	1px	black;	display:	flex;	align-items:	center;}	.child	{	width:	50px;	height:	50px;	background-color:	red;}	This	is	very	similar	to	the	method	above	to	center	an	element	vertically.	Like	last	time,	you	must	know	the	width	and	height	of	the	element	you	want	to	center.Set	the
position	property	of	the	parent	element	to	relative.Then	set	the	child's	position	property	to	absolute,	top	to	50%,	and	left	to	50%.	This	just	centers	the	top	left	corner	of	the	child	element	vertically	and	horizontally.To	truly	center	the	child	element,	apply	a	negative	top	margin	set	to	half	the	child	element's	height,	and	a	negative	left	margin	set	to	half
the	child	element's	width:	.container	{	font-family:	arial;	font-size:	24px;	margin:	25px;	width:	350px;	height:	200px;	outline:	dashed	1px	black;	position:	relative;}	.child	{	width:	50px;	height:	50px;	background-color:	red;	position:	absolute;	top:	50%;	left:	50%;	margin:	-25px	0	0	-25px;	}	Use	this	method	to	center	an	element	vertically	and	horizontally
if	you	don't	know	its	exact	dimensions	and	can't	use	Flexbox.First,	set	the	position	property	of	the	parent	element	to	relative.	Next,	set	the	child	element's	position	property	to	absolute,	top	to	50%,	and	left	to	50%.	Finally,	use	transform:	translate(-50%,	-50%)	to	truly	center	the	child	element:	.container	{	font-family:	arial;	font-size:	24px;	margin:
25px;	width:	350px;	height:	200px;	outline:	dashed	1px	black;	position:	relative;}	.child	{	width:	50px;	height:	50px;	background-color:	red;	position:	absolute;	top:	50%;	left:	50%;	transform:	translate(-50%,	-50%);}	Flexbox	is	the	easiest	way	to	center	an	element	both	vertically	and	horizontally.This	is	really	just	a	combination	of	the	two	previous
Flexbox	methods.	To	center	the	child	element(s)	horizontally	and	vertically,	apply	justify-content:	center	and	align-items:	center	to	the	parent	element:	.container	{	font-family:	arial;	font-size:	24px;	margin:	25px;	width:	350px;	height:	200px;	outline:	dashed	1px	black;	display:	flex;	justify-content:	center;	align-items:	center;}	.child	{	width:	50px;
height:	50px;	background-color:	red;}That's	everything	you	need	to	know	to	center	with	the	best	of	'em.	Now	go	forth	and	center	all	the	things.	A	combinator	is	something	that	explains	the	relationship	between	the	selectors.A	CSS	selector	can	contain	more	than	one	simple	selector.	Between	the	simple	selectors,	we	can	include	a	combinator.	There
are	four	different	combinators	in	CSS:Descendant	combinator	(space)Child	combinator	(>)Next	sibling	combinator	(+)Subsequent-sibling	combinator	(~)	Descendant	CombinatorThe	descendant	combinator	matches	all	elements	that	are	descendants	of	a	specified	element.The	following	example	selects	all	elements	inside	elements:div	p	{background-
color:	yellow;}Try	it	Yourself	Child	Combinator	(>)The	child	combinator	selects	all	elements	that	are	the	children	of	a	specified	element.The	following	example	selects	all	elements	that	are	children	of	a	element:div	>	p	{background-color:	yellow;}Try	it	Yourself	The	next	sibling	combinator	is	used	to	select	an	element	that	is	directly	after	another
specific	element.Sibling	elements	must	have	the	same	parent	element,	and	"adjacent"	means	"immediately	following".The	following	example	selects	the	first	element	that	are	placed	immediately	after	elements:div	+	p	{	background-color:	yellow;}Try	it	Yourself	Subsequent-sibling	Combinator	(~)The	subsequent-sibling	combinator	selects	all	elements
that	are	next	siblings	of	a	specified	element.The	following	example	selects	all	elements	that	are	next	siblings	of	elements:div	~	p	{	background-color:	yellow;}Try	it	Yourself	

When	to	use	alignas.	When	to	do	alignment.	When	to	do	balancing	and	alignment.	When	should	alignment	be	done.	When	is	the	best	time	to	use	center	alignment.	Alignment	alignment.center.	Alignment	at.
When	to	use	centered	text.

